Июнь
21

Биогеотехнология.

Микроорганизмы, обитающие в недрах Земли, широко используются в биогеотехнологии - добыче, превращении и переработке природных ископаемых, нефти и газа. Биогеотехнология получения металлов эксплуатирует способности отдельных микроорганизмов переводить металлы в растворимые соединения (выщелачивание металлов из руды) Thiobacillus ferrooxydans выщелачивает железо, медь и другие металлы с помощью окисления серной кислоты, которую образуют эти микроорганизмы из сульфида. Chromobacterium violaceum способна растворять золото, реализуя процесс Au->-Au (CN)4. Получены высокоэффективные штаммы Pseudomonas и термофильной бактерии Sulfolobus для удаления серы из угля - одной из важнейших экологических проблем. Ведь, сгорая, уголь сильно загрязняет окружающую среду серой.

Для извлечения металлов из сточных вод перспективны штаммы Cilrobacter sp. и Zoogloea, способные накапливать уран, медь, кобальт. Получены мутанты Cilrobacter sp. с высоким уровнем фермента фосфатазы. Такие сверхпродуценты в 2,5 раза быстрее накапливают уран, чем родительский штамм. Это связано с осаждением металла на поверхности клеток в результате энзиматического освобождения неорганического фосфата.

Бактерии родов Rliodococcus и Nocardia sp. используют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Обещают стать ценными очистителями среды галобактерии. Некоторые из штаммов этих бактерий уже с успехом применяют для удаления мазута с песчаных пляжей. Наряду с природными бактериями перспективна деятельность генно-инженерных штаммов. Уже удалось перенести плазмиды с генами ферментов, расщепляющих октан, камфару, нафталин и ксилол, в Pseudomonas sp. Получен штамм, способный эффективно утилизировать сырую нефть. В ближайшее время он будет включен в арсенал средств биотехнологической очистки от загрязнений.

Мы видим, что биотехнология, уже внедрившаяся в промышленность, активно и эффективно включается в решение экологических проблем. Именно с ней связаны надежды, что удастся создать экологически чистые и экономически высокоэффективные производства, которые придут в XXI в. на смену нынешним.

Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Май
31

Преимущества и проблемы.

Обсуждая в 1989 г. на страницах журнала “Trends in Biotechnology” перспективы использования биотехнологий в разных сферах сельского хозяйства сотрудники Федерального института в Цюрихе Николаус Гоч и Петер Риндер пишут о значении таких направлений как клонирование и перенос в растения новых генов ответственных за устойчивость к заболеваниям и контролирующих образование важных с экономической точки зрения метаболитов. Предполагается, что до 2007 г. будет проведено картирование генов большинства используемых в сельском хозяйстве одно- и двудольных растений и реализован искусственный перенос в них дополнительных генов. Перспективы успешного переноса генов, ответственных за фиксацию молекулярного азота, пока оцениваются невысоко из-за трудности решения этой проблемы. На данном этапе повышение эффективности фиксации азота за счет симбиотических и несимбиотических микроорганизмов представляется весьма реальным.

Говоря о быстром прогрессе в области генной инженерии растений, следует обратить внимание и на то, что в самое последнее время возникло и ширится движение экологов, в частности “зеленых”, против генно-инженерных работ с растениями. Они опасаются, что растения, которым придана устойчивость к гербицидам, могут быстро распространиться в природе с непредсказуемыми последствиями для культурных растений. Эти опасения небезосновательны. Поэтому можно ожидать, что генная инженерия растений будет развиваться преимущественно в направлении биотехнологического их использования. Основное внимание будет отдано культивированию клеток таких растений, которые продуцируют ценные препараты, а не созданию сортов полевых растений, устойчивых к химическим и биологическим вредителям. Конечно, это не относится к созданию растений, устойчивых к экстремальным условиям среды, ибо размножение соле-, засухо-, морозоустойчивых растения в любом случае будет полезным. Ведуться работы по строгому контролированию процесса опыления, которые в случае успеха помогут снять существующие опасения. В некоторых лабораториях пытаются получить растения с неактивной пыльцой (женская стерильность), чтобы исключить распространение пыльцы трансгенных растений.

Май
25

Создание микроорганизмов-продуцентов.

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, производство которых необходимо. Для биотехнологии нужны высокопродуктивные штаммы микроорганизмов. Их создают методами селекции - направленного отбора спонтанных или индуцированных (химическими мутагенами или радиацией) мутантов. Получение таких штаммов занимаются иногда многие годы. В результате селекции производительность продуцентов удается увеличить в сотни или тысячи раз. Например, в работе с Penicillium методами селекции выход пенициллина был увеличен в конце концов, примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Отбору высокопроизводительных штаммов предшествуют тонкие манипуляции селекционера с генетическим материалом исходных штаммов. При этом используют весь спектр естественных способов рекомбинирования генов, известных у бактерий: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) была успешно использована при создании штамма Pseudomonas putida, способного утилизовать углеводороды нефти. Очень часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериальных вирусов - бактериофагов) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся не в основной хромосоме, а в плазмидах. Путем амплификации удается увеличить число этих плазмид в клетках и существенно повысить производство антибиотиков.

Еще один подход в генетико-селекционной работе - получение генетических рекомбинантов путем слияния разных штаммов бактерий, лишенных стенок (протопластов). Так, слиянием протопластов двух штаммов Streptomyces был сконструирован новый высокоэффективный штамм-продуцент рифампицина С: мутанты Nocardia mediterranei, в которых не синтезировался рифампицин, после слияния сформировали штаммы, продуцирующие три новых рифампицина. Слияние протопластов позволяет объединять генетические материалы и таких микроорганизмов, которые в естественных условиях не скрещиваются.