Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Май
08

Топливом будущего считают водород.

Химический и электрохимический способы получения водорода неэкономичны. Поэтому специалисты обратили внимание на микроорганизмы, способные выделять водород. Еще в начале 60-х годов установили, что хлоропласты шпината в присутствии бактериального экстракта, содержащего фермент гидрогеназу, продуцируют водород. Это способны делать хемотрофные бактерии, цианобактерии, некоторые водоросли и простейшие. Сейчас предложено несколько вариантов биотехнологических систем для производства водорода, однако пока ни одна из них неприемлема для практических целей.

Не одно поколение ученых бьется над проблемой повышения эффективности фотосинтеза у микроорганизмов и растений. Задача эта еще далека от решения. Однако в результате исследований в области биологии фотосинтеза (в частности, выделения и характеристики различных мутантов фотосинтезирующих микроорганизмов) работы вышли на уровень, когда они могут стать основой для решения прикладных задач. Так, некоторые фотосинтезирующие микроорганизмы способны продуцировать аммоний за счет биоконверсии солнечной энергии. Поскольку гербициды подавляют фотосинтез, получение мутантов, не чувствительных к гербицидам - путь к созданию гербицидустойчивых сортов растений. Предполагается, что фотосинтезирующие бактерии будут участвовать в очистке промышленных газов, биодеградации токсических веществ и отходов производства.

Биотехнологической биоэнергетике предстоит ответить на вопросы, связанные с созданием биотопливных элементов, способных превращать химическую энергию субстратов в другие виды энергии, главным образом в электрическую. Такие элементы используют в настоящее время при создании биологических датчиков-биосенсоров.

Апр
18

Биодеградация и биоконверсия.

Это важнейшие направления биотехнологии, основанные на использовании микроорганизмов. Ведь переработка (биодеградация) отходов и побочных продуктов сельского хозяйства и промышленности решает одновременно производственные и природоохранные задачи. Речь идет о достижении двух целей в едином процессе: утилизации (биодеградации) и превращении ненужного (как правило, экологически вредного) сырья в полезные продукты (биоконверсия).

Яркий пример биотехнологии, основанной на биодеградации в сочетании с биоконверсией - хорошо налаженная в Японии и других странах переработка отходов животноводческих комплексов с помощью синезеленых водорослей. Избавляясь от отходов, одновременно получают биомассу с высоким содержанием белка и биогаза, сильно обогащенный метаном. В Индии в настоящее время действует около 600 тыс. биоустановок по производству биогаза, обеспечивающих основную потребность в нем сельского хозяйства.

Одна из сложнейших проблем - утилизация целлюлозы. Целлюлоза - органическое соединение. На планете ежегодно синтезируется 4 - 1010 т-целлюлозы в результате фотосинтеза, т. е. в ней аккумулирована значительная часть солнечной энергии, поступающей на землю. Мировые ресурсы целлюлозы составляют 7×10 т. Это линейный полимер из мономеров целлобиозы, основу которой составляет глюкоза. Полное расщепление целлюлозы до глюкозы могло бы решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства, бумажной и текстильной промышленности. Расщепить целлюлозу непросто, так как она состоит из нерастворимых волокон, ассоциированных с другими полисахаридами - гемицеллюлозой, пектином, и окружена лигнином, закрывающим целлюлозу от ферментов. Животные не переваривают целлюлозу. В природе ее расщепляют микроорганизмы, например нитчатый гриб - Trichoderma reesei, который продуцирует большое количество целлюлолитических ферментов (целлюлаз), представляющих собой смесь эндоцеллюлаз и экзоцеллюлаз (расщепляют полимер соответственно изнутри цепочки и с концов) и (3-глюкозидазы. Однако деятельность этих и других известных природных микроорганизмов недостаточно эффективна для создания на их основе промышленной биотехнологии расщепления целлюлозы.

В этой кардинальной и масштабной проблеме, как ни в какой другой, требуется помощь генной инженерии. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт. Существует, однако, серьезное опасение, что генно-инженерные микроорганизмы с повышенной целлюлолитической способностью могут распространиться в природе и станут наносить ущерб растительному миру и изделиям из целлюлозы, окружающим человека повсеместно.

Март
30

Биоэнэрготехнология.

Запасы энергии в растительном покрове Земли, создаваемой с помощью фотосинтеза, сопоставимы с запасами энергии природных ископаемых. Обычно сухую биомассу превращают в энергию в процессе сгорания, тогда как наиболее эффективный способ превращения с помощью микроорганизмов сырой биомассы в энергию - получение углеводородов биогаза (метана).

Метановое брожение было открыто еще в конце XVIII в. Это сложный процесс, в котором участвует несколько видов микроорганизмов (превалируют Methanobacterium formicicum и М. hungati). Биогаз, образующийся В результате такого брожения, представляет собой смесь, главные компоненты которой метан (65%), углекислый газ (30%) и сероводород (1%).

Для получения биогаза используют смеси органических веществ (навоз, солому, помет, водоросли, целлюлозную биомассу), что требует для метанообразования многокомпонентных микробных ассоциаций. Биогаз давно производят в Китае, Индии, на Филиппинах. Сейчас интерес к этому виду топлива проявляют и в некоторых странах Западной Европы (в частности, во Франции). Метан важен не только для производства биоэнергии. Его получение - эффективный способ утилизации отходов сельского хозяйства.

Экологически чистое топливо - этанол. В последние годы его начинают использовать в двигателях внутреннего сгорания. Наиболее пригодны для производства этанола злаки (особенно кукуруза), картошка, маниок, земляная груша, сахарная свекла, сахарный тростник. У двух последних основной запасной углевод - сахароза, у остальных - крахмал. Сахарозу и крахмал обычно сбраживают с помощью дрожжей Saccharomyces cerevisiae. В последнее время спектр используемых для этого микроорганизмов значительно расширился. Обращено, например, внимание на бактерию Zymomonas mobilis, способную сбраживать сок агавы. Она эффективнее сбраживает сахара и устойчивее к этанолу (конечному продукту), чем дрожжи. В настоящее время ведутся работы по генно-инженерному изменению этой бактерии с целью расширения круга утилизируемых ею субстратов. Перспективными для биоконверсии полисахаридных субстратов в этанол считаются некоторые термофильные бактерии. Так, Clostridium tlicrmohydrosulfuricum утилизирует с очень высоким выходом этанола продукты деградации целлюлозы.

Для повышения выхода продукта и стабилизации активности бактерий производят иммобилизацию их на разных носителях. Согласно прогнозам этанол, получаемый ферментацией углеводородсодержащих субстратов, к 2000 г. будет стоить дешевле, чем спирт, производимый по традиционной химической технологии.

Благодаря поиску микроорганизмов, содержащих углеводороды, которые можно использовать в качестве заменителей нефти, обнаружены некоторые микроводоросли (Bolhryacoceus, Isochrysis и др.), содержащие эти соединения в количестве от 15 до 80% сухой массы клеток. Наилучший состав углеводородов присущ В. braunii, что позволяет использовать ее в качестве источника энергии.