Май
10

Вакцины.

Большое значение для медицины и сельского хозяйства имеют вакцины, которые вызывают активный иммунитет против инфекционных болезней. С помощью генной инженерии получены так называемые рекомбинантные вакцины.

Такой составной вирус экспрессировал слитый белок на поверхности инфицированных им клеток, растущих в культуре. При инъекциях этих клеток в цыплят почти все иммунизированные птицы были устойчивы к вирусу болезни Ньюкасле. Аналогичная живая вакцина была получена и для вируса бронхита птиц.

Отлажена техника изготовления вакцин-антигенов, которая заключается в клонировании и функционировании отдельных генов возбудителей болезней в Е. coli, дрожжах, клетках насекомых или млекопитающих. Вакцины-антигены высокостабильны, малоопасны как аллергены и неинфекционны. Одна из проблем, возникающая при использовании этих вакцин - наблюдающаяся низкая иммуногенность.

Чтобы пациенты легко переносили действие вакцин и для повышения их эффективности разработаны синтетические вакцины. Их создают с помощью соединения фрагментов белков, полисахаридов и других веществ микроорганизмов (к которым образуются антитела) с большими молекулами-носителями (адъювантами), которые усиливают иммуногенность антигенов. При этом к одной молекуле, стимулирующей иммунный ответ, могут быть присоединены фрагменты антигенов нескольких видов микробов и вирусов, что приводит к образованию поливакцин.

С помощью генной инженерии уже получены первые коммерчески доступные вакцины для человека пробактериального энтеротоксина, против гепатита Б.

Май
10

Биотехнология на основе клеток животных.

В последние годы значительные успехи достигнуты в биотехнологических работах, проводимых с использованием клеток животных. Уже длительное время применяют технику гибридизации животных клеток разного происхождения, а также перенос чужеродных генов в культивируемые клетки.

В середине 70-х годов вирусолог Рудольф Ениш (ФРГ) провел первый успешный эксперимент по переносу чужеродного гена в геном целого животного организма (мыши). В качестве переносчика гена (вектора) использовали вирус лейкоза мышей. В дальнейшем были отработаны различные варианты переноса генов в животных (трансгенные животные), включая прямую микроинъекцию в пронуклеус зиготы. Подобные эксперименты оказали решающее воздействие на вовлечение клеток животных в биотехнологию. Существенно то, что только на базе клеток животных можно получать такие важные для медицины биотехнологические продукты, как антитела и вакцины. Использование клеток животных для продуцирования других биологически активных продуктов пока, как правило, экономически менее выгодно, чем на базе микроорганизмов. Однако получить некоторые полноценные белки можно только из клеток животных.

Май
08

Генно-инженерное получение микроорганизмов-продуцентов.

В середине 70-х годов возникла новая экспериментальная технология - генетическая (или генная) инженерия, которая основана на конструировании рекомбинантной ДНК вне клетки (in vitro) и ее размножении в клетках микроорганизмов. В результате использования этой технологии стало возможным выделять индивидуальные гены, модифицировать, соединять друг с другом, получая “слитые гены”, продуцирующие белки с совершенно новыми свойствами (белковая инженерия).

Типичная схема получения и размножения (амплификации) индивидуального фрагмента ДНК (гена) приведена на рис. 2. В качестве векторов, т. е. молекул-носителей, в которых происходит размножение генов, используют плазмиды, бактериофаги и вирусы, способные размножаться в бактериальных клетках. После соединения (лигирования) вектора с фрагментом ДНК, несущим ген, образуется рекомбинантная ДНК. Затем вектор с геном вводят в клетки микроорганизмов (трансформация), где они амплифицируются. В результате получается множество копий одного гена - клон. Поэтому такой способ получения индивидуального гена называют клонированием.

Если для клонирования использовать ДНК человека, содержащую все его гены, они окажутся в разных клонах будет получена генная библиотека (клонотека) человека. Гены животных, человека и растений, клонируемые таким путем в бактериях (как правило, используют Е. coli), не функционируют в них. Для этого их нужно выделить из бактерии, снабдить регулятором бактериального гена и вновь ввести в бактерию. Получены и используются многие штаммы бактерий, в которых функционируют гены разного происхождения, производящие нужные продукты.

Этот арсенал новых, генно-инженерных, штаммов-продуцентов позволил наряду с продуктами природных штаммов (их называют биопродуктами первого поколения) начать производство на базе генно-инженерных штаммов рекомбинантные белки - биопродукцию второго поколения. Биопродукцией третьего поколения будут искусственно синтезированные соединения, полностью имитирующие биологические функции природных белков, но не являющиеся ими.

Генно-инженерные методы (технология рекомбинантных ДНК) все шире используют в биотехнологическом производстве прежде всего ценных для медицины белков, в том числе таких, которые трудно синтезировать химическими методами пли получить в нужных количествах из биологического материала. Это в первую очередь белки и пептиды (белковые молекулы, состоящие из небольшого числа аминокислот), которые синтезируются в организме человека и используются как медикаменты. Усилия генных инженеров направлены на создание бактерий-продуцентов, которые бы с высокой эффективностью производили такие биологически активные продукты. Основные трудности здесь заключаются не столько в конструировании продуцентов, сколько в том, чтобы синтезирующиеся в них чужеродные белки нормально формировались, модифицировались и не разрушались в клетках микроорганизмов.

Март
15

Лекарства от СПИДа.

Ни одна другая медицинская проблема столь быстро не вовлекла в сферу исследований и клиники таких ресурсов, как СПИД. Хотя со времени обнаружения вируса ВИЧ прошло около 7 лет, на испытании уже находятся десятки потенциальных лекарственных препаратов. Однако и задача оказалась уникальной по сложности, СПИД как бы сконцентрировал в себе все самые сложные проблемы современной медицины. Если бы это заболевание встало перед человечеством не в 90-е годы, а хотя бы на 30 - 40 лет раньше, когда наука еще не проникла в тайны молекулярных механизмов взаимодействия вируса и клетки, иммунной системы, не была вооружена генно-инженерными методами, - было бы невозможно определить даже направление поиска лекарственных средств для борьбы с ретровирусами. В свете же сегодняшних знаний, а также при наличии возможности размножать вирус вне организма в клетках in vitro, осуществлять генно-инженерные операции с клеточным и вирусным геномами специалистам ясно, в каком направлении вести поиск средств против СПИДа. Нужно найти факторы, способные прервать на какой-либо стадии репродукцию вируса, начиная от его проникновения в клетку. Большие успехи в борьбе с различными вирусными инфекциями были достигнуты с помощью вакцинации. Вакцинация - форма иммунопрофилактики, в которой весь агент или часть инфекционного агента вводится однократно, либо несколько раз для образования иммунного ответа, защищающего от последующей инфекции. Широкое распространение получили вакцины на основе живого или ослабленного вируса. Этим же путем пошли и при борьбе со СПИДом. Однако несколько проблем осложнило получение эффективной и дешевой вакцины. Сложность в случае СПИДа состоит в том, что вакцина должна активировать именно те клетки организма (Т4-лимфоциты и макрофаги), которые сами поражаются вирусом, т. е. должны сами себя очистись от вируса.