Апр
25

Создание новых форм.

Перенос генов в растения может быть с успехом использован и для создания новых интересных форм в цветоводстве. С помощью генно-инженерных подходов получена, например, трансгенная петуния с белыми цветами. Достигнуто это путем переноса гена хальконсинтетазы в антисмысловой ориентации. В результате синтеза анти-мРНК нарушалось образование флавиноидов, ключевую роль в котором играет фермент хальконсинтетаза.

Большое внимание в биотехнологических работах уделяют сое, плоды которой содержат много белка (40%) и масла (20%). Некоторым исследовательским группам удалось регенерировать из трансформированных отдельными генами клеток сои, растущих в культуре, целые растения с измененными генетическими свойствами. Они устойчивее к гербицидам, вирусам и насекомым, содержат больше богатых метионином запасных белков. Работы с соей продолжаются с целью получения новых сортов, устойчивых к вирусам и с измененным составом масла. Желание исследователей улучшить свойства такого ценного продукта, как масло, вполне понятно. Ведь мировая продукция растительного масла в настоящее время достигает 60 млн. т, а общая стоимость производимого масла составляет 20 млрд. долл.

Мы уже говорили об ассоциациях растений с микробами. Генная инженерия стремится изменить генетические свойства не только растений, но и ассоциированных с ними микроорганизмов. Известно, что растения получают из почвы лишь незначительную часть содержащегося в ней азота. Некоторых из них снабжают азотом симбиотические бактерии, которые живут в анаэробных условиях в клубеньках, образуемых на корневых волосках. За связывание атмосферного азота у азотфиксирующих клубеньковых бактерий Rhizobium ответственны гены nif. Перенос nif-генов в генетический аппарат растений решил бы важнейшую агробиотехнологическую задачу. Однако сейчас пока удалось реализовать несколько иной подход, который позволяет усилить азотфиксирующие свойства симбионта донника (Rhizobium meliloti) путем увеличения в нем числа nil-генов.

Разработаны подходы для получения морозоустойчивых растений, основанные на генно-инженерных манипуляциях с Pseudomonas syringae, сосуществующей с некоторыми растениями и содержащей белок, который ускоряет кристаллизацию льда. Когда из бактерии удаляют ген для этого белка, полученный штамм называют “лед-минус”. Штамм “лед-минус”, распыленным над клубнями картофеля, конкурирует с обычными бактериями, что в конечном счете приводит к повышению морозоустойчивости растений.

Апр
22

Биотехнологическое получение антибиотиков.

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).

Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.

До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.

Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.

Март
22

Очищение и биодеградация.

Аэробные и анаэробные микроорганизмы уже давно и широко очищают воды от органических материалов. В бактериях рода Pseudomonas имеются оксиредуктазы, или гидроксилазы, способные разлагать углеводороды и высокотоксичные для окружающей среды ароматические вещества (бензол, толуол, ксилол). Гены, кодирующие в бактериях эти ферменты, локализованы в плазмидах. С помощью генной инженерии и генетических методов получен штамм Pseudomonas putida, который способен расти на неочищенной нефти и весьма эффективно очищать от нее сточные воды. Очистка сточных вод от металлов часто основана на поглощении их микроорганизмами. Так, на практике используют нитчатые грибы, которые способны в больших количествах поглощать торий.

Биодеградация - один из способов удаления пестицидов, способных длительное время сохраняться в почве. С помощью методов генной инженерии сконструирован штамм Pseudomonas ceparia, эффективно разрушающий 2, 4, 5-трихлорфеноксиацетат.

В настоящее время микробная биодеградация и биоконверсия служат основой для создания многих безотходных экологически чистых производств в сельском хозяйстве и промышленности. Все большее распространение получают биотехнологические цепочки, в которых отходы и побочные продукты одного биотехнологического процесса используются в качестве сырья для другого. Так, на гидролизатах растительного сырья выращивают дрожжи, а фильтрат культуральной жидкости используют для синтеза грибного белка. О некоторых других биотехнологиях, основанных на биодеградации и биоконверсии, мы расскажем в последующих двух разделах.

Март
02

Появление СПИДа.

Как и откуда мог появиться ВИЧ? СПИД озадачил и ученых, и медиков-практиков тем, что это страшное заболевание появилось вдруг, как пришелец из космоса. Первые 3 года, когда еще не было ничего известно о природе патогена, ситуация была крайне шокирующей. Когда стало известно, что возбудитель заболевания вирус из класса ретровирусов, проблема несколько прояснилась, но облегчения не наступило. Во-первых, специалисты хорошо знают, насколько сложно иметь дело с ретровирусами, особенно с теми, которые внедряются в клетки иммунной системы. Во-вторых, ретровирусы, способные передаваться от человека к человеку, до самого последнего времени не были известны. Все это не могло не вызвать широкого общественного интереса к вопросу о происхождении возбудителя СПИДа, чем немедленно воспользовались журналисты - любители сенсации. Несколько лет на страницах газет муссировалась версия о том, что ВИЧ был сконструирован с помощью генно-инженерных методов и при испытании на обезьянах “сбежал”.

В принципе современные генно-инженерные онковирусологические лаборатории конструируют рекомбинантные ретровирусы. Поэтому такая версия исходила из реальной возможности. Однако доказательств, что это имело место, не было никаких. В то же время существует более правдоподобная версия о природном происхождении вируса, поскольку совсем недавно были открыты другие ретровирусы человека и животных, очень похожие на ВИЧ. В природе рекомбинационные процессы среди вирусов - нормальное явление и идут непрерывно, порождая новые формы вирусов. ВИЧ, безусловно, возник именно в результате этих процессов, хотя до сих пор наука не знает, как и когда это произошло (впрочем, столь же мало известно о происхождении других вирусов).

ВИЧ относится к ретровирусам - особому и специфическому классу РНК-содержащих вирусов, способных проникать в хромосомный аппарат клеток и находиться там сколь угодно долго. Название “ретровирусы” присвоили этому классу вирусов после того, как в 1970 г. было сделано одно из крупнейших в молекулярной биологии открытий, показавшее существование у этих вирусов фермента, который направляет поток наследственной информации в обратную сторону от РНК к ДНК.