Июнь
21

Биогеотехнология.

Микроорганизмы, обитающие в недрах Земли, широко используются в биогеотехнологии - добыче, превращении и переработке природных ископаемых, нефти и газа. Биогеотехнология получения металлов эксплуатирует способности отдельных микроорганизмов переводить металлы в растворимые соединения (выщелачивание металлов из руды) Thiobacillus ferrooxydans выщелачивает железо, медь и другие металлы с помощью окисления серной кислоты, которую образуют эти микроорганизмы из сульфида. Chromobacterium violaceum способна растворять золото, реализуя процесс Au->-Au (CN)4. Получены высокоэффективные штаммы Pseudomonas и термофильной бактерии Sulfolobus для удаления серы из угля - одной из важнейших экологических проблем. Ведь, сгорая, уголь сильно загрязняет окружающую среду серой.

Для извлечения металлов из сточных вод перспективны штаммы Cilrobacter sp. и Zoogloea, способные накапливать уран, медь, кобальт. Получены мутанты Cilrobacter sp. с высоким уровнем фермента фосфатазы. Такие сверхпродуценты в 2,5 раза быстрее накапливают уран, чем родительский штамм. Это связано с осаждением металла на поверхности клеток в результате энзиматического освобождения неорганического фосфата.

Бактерии родов Rliodococcus и Nocardia sp. используют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Обещают стать ценными очистителями среды галобактерии. Некоторые из штаммов этих бактерий уже с успехом применяют для удаления мазута с песчаных пляжей. Наряду с природными бактериями перспективна деятельность генно-инженерных штаммов. Уже удалось перенести плазмиды с генами ферментов, расщепляющих октан, камфару, нафталин и ксилол, в Pseudomonas sp. Получен штамм, способный эффективно утилизировать сырую нефть. В ближайшее время он будет включен в арсенал средств биотехнологической очистки от загрязнений.

Мы видим, что биотехнология, уже внедрившаяся в промышленность, активно и эффективно включается в решение экологических проблем. Именно с ней связаны надежды, что удастся создать экологически чистые и экономически высокоэффективные производства, которые придут в XXI в. на смену нынешним.

Июнь
20

СПИД.

Еще 10 лет назад слово СПИД отсутствовало в нашем лексиконе, а сейчас это заболевание встало В один ряд с другими реальными угрозами (ядерным оружием, экологией) глобального уничтожения человечества СПИД сигнализирует нам о том, что в преддверии XXI ” человечество, вооруженное до зубов достижениями научно-технического прогресса, не должно считать что страшные эпидемии, которые косили миллионы, остались позади. СПИД - это предостережение от чрезмерной амбициозности человека, считающего, что он многого достиг в сфере здравоохранения. Огромная опасность СПИДа состоит в том, что он - оружие природы над которым человек не властен в такой мере, как над ядерным и известными видами биологического и химического оружия. СПИД опасен еще и тем, что пульт управления этим оружием находится во власти не какой-то отдельной группы профессионалов военных и политиков а широких и, нередко, темных масс населения планеты. И поэтому неимоверно трудно заставить всех осознать опасность и остановить распространение СПИДа, ибо искоренить эту болезнь из популяции людей в ближайшие, по крайней мере, 10 - 20 лет будет невозможно. Носитель СПИДа уже прочно внедрился в хромосомы 10 млн. людей.

Коварство СПИДа заключается в том, что его возбудитель поражает не отдельные органы или системы органов человека - сердце, печень, легкие и т. д., а святая святых его “жизнеустойчивости” - защитные (иммунные) механизмы, призванные вырабатывать антитела против всех патогенов. В результате организм становится полностью безоружным против любой инфекции, смертельно опасной становится обыкновенная простуда. СПИД - это болезнь болезней, запрятанная в глубинах организма, и человек, пораженный им, может многие годы не подозревать о своей обреченности. СПИД - это болезнь конца XX в., о ней и его возбудителе медицина и биология узнали лишь в самое последнее время.

В 1983 г. Люк Монтанье и его коллеги в Институте им. Пастера (Париж) и параллельно Роберт Галло со своими коллегами в Национальном институте рака в США выделили и описали возбудитель СПИДа вирус иммунодефицита человека (ВИЧ), который относится к ретревирусам. Вскоре были разработаны диагностические тесты позволяющие быстро обнаруживать вирус в крови человека. Началось широкое обследование населения, прежде всего в “группе риска” - среди гомосексуалистов, проституток, наркоманов, а также у доноров крови и в имеющихся запасах крови. При этом выяснилось, что вирусоносителей значительно больше, чем больных.

Июнь
18

Против бешенства.

На основе рекомбинантного вируса коровьей оспы, несущего ген гликопротеида вируса бешенства, создано новое поколение вакцин против бешенства.

Суть метода генно-инженерного получения живых вакцин отражена далее. В рекомбинантную молекулу ДНК с геном тимидинкиназы (ТК) вируса вакцины оставляют ген другого вируса (герпеса, гепатита, вазикулярного стоматита или др.). Нормальный вирус вакцины и составную плазмиду переносят в клетки животных, в которых собственный ген. тимидинкиназы не работает (ТК-клетки). Ввиду наличия гомологии (схожести) между вирусной и плазмидной ДНК (общее у них - тимидинкиназный ген) между ними происходит гомологичная рекомбинация. Клетки, в которых такая рекомбинация не произошла, становятся ТК (за счет работы тимидинкиназного гена вируса вакцины), а клетки с рекомбинантным вирусом остаются ТК, что и позволяет их отселектировать (разделить). Такие составные вирусы используют затем в качестве живых безопасных вакцин. Вставляя в вирус вакцины одновременно гены разных вирусом, можно создавать мультивалентную вакцину против нескольких вирусов одновременно.

Получение биологически активных белков с помощью культивируемых клеток животных проводится в промышленных масштабах с использованием ферментеров - специальных культиваторов, в которых можно выращивать клетки в больших количествах. Самый крупный ферментер для культивирования животных клеток-продуцентов создан фирмой Cellthech. Его объем 2000 л, а производительность - 15 кг МАТ в год. Существует проект ферментера на 10 000 л.

Потребность в продуктах, синтезируемых клетками животных, непрерывно растет. В 1990 г. рынок сбыта (потребность) одного из таких продуктов - эритропоэтина - оценен в 400 - 750 млн. долл. В 1987 г. в США было продано рекомбинантных вакцин на сумму 745 млн. долл. Ожидается, что в 1993 г. эта сумма возрастет до 4,5 млрд. долл. Для диагиостикумов иммунных заболеваний (главным образом СПИДа), создаваемых на основе антител, только в США рынок сбыта составлял в 1987 т. 167,2 млн. долл., а к 1992 г. он достигнет, как ожидается, 294 млн. долл.

Июнь
11

Борьба с сорняками.

Следующее направление генно-инженерных работ - создание гербицидустойчивых ценных видов культурных растений, с тем чтобы эффективнее бороться с сорняками. Традиционные методы селекции создания сортов, устойчивых к гербицидам, очень длительны и малорезультативны. Поэтому и здесь большие надежды связывают с использованием генной инженерии. Пока можно говорить об отдельных примерах. Осуществлен успешный перенос гена устойчивости к гербицидам из Streptomyces в клетки сахарной свеклы. После этого регенерировавшие из них растения приобрели устойчивость к гербициду фосфинотрициану. Этим же путем удалось получить устойчивые к гербицидам растения табака.

Есть еще одна интересная область применения генной инженерии. В размягчении плодов помидоров при их хранении, ухудшающем потребительские качества плодов, участвует фермент полигалактуронидаза (ПГУ). Естественно желание подавить активность этого фермента в созревающих помидорах. Методом генной инженерии сконструирован ген, транскрипция которого приводит к образованию вместо природной мРНК фермента анти-мРНК (т. е. РНК, комплементарную нормальной мРНК). В результате в клетках растения, в которое перенесен искусственно созданный ген, накапливается анти-мРНК, которая ингибирует природную мРНК. Механизм подавления мРНК ПГУ в клетках томатов представляется следующим образом: накапливающиеся в клетках молекулы анти-ПГУ мРНК вступают в комплекс с мРНК ПГУ, в результате чего последняя не в состоянии транслироваться. Анти-мРНК в данном случае действуют подобно антителам, инактивирующим антигены.