Июнь
21

Биогеотехнология.

Микроорганизмы, обитающие в недрах Земли, широко используются в биогеотехнологии - добыче, превращении и переработке природных ископаемых, нефти и газа. Биогеотехнология получения металлов эксплуатирует способности отдельных микроорганизмов переводить металлы в растворимые соединения (выщелачивание металлов из руды) Thiobacillus ferrooxydans выщелачивает железо, медь и другие металлы с помощью окисления серной кислоты, которую образуют эти микроорганизмы из сульфида. Chromobacterium violaceum способна растворять золото, реализуя процесс Au->-Au (CN)4. Получены высокоэффективные штаммы Pseudomonas и термофильной бактерии Sulfolobus для удаления серы из угля - одной из важнейших экологических проблем. Ведь, сгорая, уголь сильно загрязняет окружающую среду серой.

Для извлечения металлов из сточных вод перспективны штаммы Cilrobacter sp. и Zoogloea, способные накапливать уран, медь, кобальт. Получены мутанты Cilrobacter sp. с высоким уровнем фермента фосфатазы. Такие сверхпродуценты в 2,5 раза быстрее накапливают уран, чем родительский штамм. Это связано с осаждением металла на поверхности клеток в результате энзиматического освобождения неорганического фосфата.

Бактерии родов Rliodococcus и Nocardia sp. используют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Обещают стать ценными очистителями среды галобактерии. Некоторые из штаммов этих бактерий уже с успехом применяют для удаления мазута с песчаных пляжей. Наряду с природными бактериями перспективна деятельность генно-инженерных штаммов. Уже удалось перенести плазмиды с генами ферментов, расщепляющих октан, камфару, нафталин и ксилол, в Pseudomonas sp. Получен штамм, способный эффективно утилизировать сырую нефть. В ближайшее время он будет включен в арсенал средств биотехнологической очистки от загрязнений.

Мы видим, что биотехнология, уже внедрившаяся в промышленность, активно и эффективно включается в решение экологических проблем. Именно с ней связаны надежды, что удастся создать экологически чистые и экономически высокоэффективные производства, которые придут в XXI в. на смену нынешним.

Июнь
15

Получение антибиотиков.

Антибиотики вырабатываются микроорганизмами в результате совместного действия продуктов 10 - 30 генов, что усложняет использование генно-инженерных подходов для управления их синтезом. Однако данная проблема разрешима в тех случаях, когда синтез антибиотиков определяется мультиферментными комплексами, кодируемыми одним опероном (например, в случае антибиотиков пептидной природы). Это открывает новые перспективы в биотехническом получении антибиотиков. Внедрение соответствующих генов из одного микроорганизма в клетки другого близкородственного может приводить к получению “гибридного” антибиотика, обладающего новыми свойствами. Этот подход был успешно применен в 1988 г. биохимиком Михаэлем Хопвудом в США. При объединении генов биосинтеза актинородина и медермицина был получен новый антибиотик, получивший название “медерродин”. В другом случае этот же автор создал штамм, продуцирующий “гибридный” антибиотик дигидрогранатиродив. Высокая продуктивность штаммов микроорганизмов иногда достигалась за счет увеличения в клетках количества копий генов биосинтеза антибиотика. Таким образом, удалось, например, существенно увеличить выход актинородина.

Широко применяют антибиотики в медицине, сельском хозяйстве (для лечения, а также для улучшения роста и развития молодняка), в пищевой промышленности (консервирующие средства). В 1987 г. за рубежом стоимость всех антибиотиков, использованных в качестве антибактериальных препаратов, составила 3,5 млрд. долл.; ожидается, что в 1992 г. она достигнет 4,2 млрд. долл.

В борьбе с болезнетворными бактериями вместо антибиотиков иногда используют другую бактерию - антагонист патогенного штамма. Примером может служить дикий патогенный штамм бактерии Streptococcus mutans, разрушающий зубную эмаль и дентин. При введении в ротовую полость мутантного штамма этого же вида выделяется белковый продукт, губительный для дикого штамма. В данном случае бактерии-антагонисты выступают в роли биостерилизаторов. Описаны аналогичные способы защиты сельскохозяйственных растений. В частности, это относится к инфекционному заболеванию рассады томатов, вызываемому почвенными бактериями Fusarium oxysporum. Заболевание связано с действием фузаровой кислоты, продуцируемой этими бактериями. В качестве биостерилизатора в этом случае используют клетки Pseudomonas solanactarum, способные накапливать фузаровую кислоту и этим снижать ее токсичнjt воздействие на томаты.

Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Май
25

Создание микроорганизмов-продуцентов.

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, производство которых необходимо. Для биотехнологии нужны высокопродуктивные штаммы микроорганизмов. Их создают методами селекции - направленного отбора спонтанных или индуцированных (химическими мутагенами или радиацией) мутантов. Получение таких штаммов занимаются иногда многие годы. В результате селекции производительность продуцентов удается увеличить в сотни или тысячи раз. Например, в работе с Penicillium методами селекции выход пенициллина был увеличен в конце концов, примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Отбору высокопроизводительных штаммов предшествуют тонкие манипуляции селекционера с генетическим материалом исходных штаммов. При этом используют весь спектр естественных способов рекомбинирования генов, известных у бактерий: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) была успешно использована при создании штамма Pseudomonas putida, способного утилизовать углеводороды нефти. Очень часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериальных вирусов - бактериофагов) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся не в основной хромосоме, а в плазмидах. Путем амплификации удается увеличить число этих плазмид в клетках и существенно повысить производство антибиотиков.

Еще один подход в генетико-селекционной работе - получение генетических рекомбинантов путем слияния разных штаммов бактерий, лишенных стенок (протопластов). Так, слиянием протопластов двух штаммов Streptomyces был сконструирован новый высокоэффективный штамм-продуцент рифампицина С: мутанты Nocardia mediterranei, в которых не синтезировался рифампицин, после слияния сформировали штаммы, продуцирующие три новых рифампицина. Слияние протопластов позволяет объединять генетические материалы и таких микроорганизмов, которые в естественных условиях не скрещиваются.