Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Апр
26

Интерфероны.

Это белки-биостимуляторы, активаторы иммунной системы клеток. Кроме того, они обладают антивирусной активностью и препятствуя размножению раковых клеток. Существуют 3 класса интерферонов человека: а, р и у. Уже в конце 70-х гидов были получены первые гибридные ДНК, способные функционировать в бактериальных клетках с образованием р-интерферона человека. Затем аналогичные конструкции были созданы для а- и у интерферонов.

В результате переноса в клетки Е. соi рекомбинантных (гибридных) ДНК с регуляторными элементами бактериального триптофанового или лактозного оперона и интерфероновыми генами получили соответствующие штаммы-продуценты. Для повышения их продуктивности, а также усиления антивирусной активности интерферонов в дальнейшем было проведено несколько дополнительных модификаций рекомбинантной ДНК (в частности, проведена замена некоторых аминокислот), подобраны генотипы клеток-хозяев и условия их культивирования.

Бактериальные штаммы-продуценты всех трех типов интерферонов были получены и в СССР: для а- и у интерферонов - и Институте биоорганической химии АН СССР, а для р-интерферона - во ВНИИГенетики и селекции промышленных микроорганизмов. Кроме Е. coli, для производства интерферонов используют также грамотрицательные бактерии Metfrylomonas, Salmonella, Pseudomonas и др. В частности, на основе штамма Pseudomonas sp. налажено промышленное получение человеческого р-интерферона в СССР. Созданы и дрожжевые продуценты интерферонов, которые имеют некоторые преимущества перед бактериальными: дрожжи используют более дешевые субстраты, не подвержены литическому действию фагов (что постоянно угрожает бактериальным продуцентам) или аутолизису, легко сепарируются, осуществляют правильный процессинг (формирование) преинтерферонов и др.

Март
25

Применение биосенсоров.

В качестве основного биотехнологического элемента биосенсоров чаще всего применяют различные ферменты. Такими элементами для электрохимических, калориметрических и оптических биосенсоров, создаваемых промышленностью, являются глюкооксидаза, лактатоксидаза, пероксидаза, уриказа, цитохром С. В газофазных биосенсорах успешно используют формальдегид-дегидрогеназы (для определения паров формальдегида) и холинэстеразы (для тестирования фосфорорганических пестицидов). В последнее время появились иммуносенсоры, которые можно рассматривать как биосенсоры нового поколения, обещающие занять центральное место в этой сфере биотехнологии. Многообещающ и новый подход в создании биосенсоров - соединение с электродами различных биологических рецепторов.

Рынок потребления биосенсоров непрерывно растет, о чем свидетельствуют следующие цифры: только в общая стоимость производимых в 1986 г. биосенсоров составляла 14,4 млн. долл., а в 1991 г. ожидается, что она достигнет уже 365 млн. долл. Сходная ситуация, как предполагают специалисты, сложится в Японии и в европейских странах.

Заканчивая расказ об использовании микроорганизмов в биотехнологии, хотелось бы остановиться на некоторых трудностях принципиального характера, с которыми столкнулись исследователи, когда попытались на базе этих организмов реализовать такую прогрессивную технологию, как генная инженерия. Одна из трудностей связана с неоднозначной пространственной сборкой чужеродных белков, синтезируемых в трансформированных клетках микроорганизмов. Это сказывается на активности и специфичности получаемых белковых продуктов. Кроме того, в микроорганизмах не происходит модификация белков, необходимая для полноценного функционирования (гликозилирование, фосфорилирование и др.). Поэтому, несмотря на очевидные успехи в использовании микроорганизмов, исследователи все больше вовлекают в биотехнологию растительные и животные клетки.

Фев
23

Антинела.

Традиционным способом невозможно получить моноспецифические, или, как говорят, моноклинальные антитела (сокращенно МАТ). Для этого необходимо разделить либо смесь антител, либо В-клетки на отдельные виды. Эта задача была решена в 1975 г. немецкими специалистами Даном Келлером и Досоном Мелстейном, которые разработали метод создания гибридом. Метод основан на слиянии клеток опухоли с В-лимфоцитами и получении клеточных гибридов или гибридом. Опухолевые клетки придают лимфоцитам способность к неограниченному размножению вне организма с сохранением их способности продуцировать и секретировать в культуральную среду антитела. В условиях культивирования гибридом вне организма можно из каждой гибридной клетки получить обособленный клон, производящий антитела одной специфичности - МАТ.

В последнее время разработана процедура получения неспецифических МАТ, основанная на слиянии двух разных гибридов. Гибридная гибридома (фузома) обеспечивает образование одного иммуноглобулина с антигенсвязывающей способностью, характерной для обоих партнеров. Сейчас гибридомы и фузомы широко используют для производства гомогенных антител, специфичных для почти любого антигена.

Новое направление в иммунобиотехнологии - создание искусственных антител, обладателей необычных свойств. Ген тяжелой цепи иммуноглобулина (молекулы антитела) выделяли гибридомы, которая продуцировала иммуноглобулин против химического агента 4-гидрокси-З-нитрофенацетн-ла (ГНФ). У этого гена вариабельная (изменчивая) область (V) соответствует антигену. Затем в константную область (С) гена иммуноглобулина вставляли ген фермента ДНКазы из Staphylococcus aureus. Образующийся рекомбинантный (гибридный) ген кодировал рекомбинантный белок, состоящий из изменяющейся области и части константной области иммуноглобулина, а также ДНКазы. При функционировании этого гена в клетках, продуцирующих легкую цепь иммуноглобулина, происходила самосборка и образовывался рекомбинантный (гибридный) иммуноглобулин, состоящий из легкой и тяжелой цепей (антитело). Это антитело было специфично по отношению к ГНФ и в то же время обладало ДНКазной активностью. Таким образом, можно осуществлять разнообразные комбинации компонентов антител, получать новые их формы, отсутствующие в природе.

Широкое применение МАТ нашли в сфере науки и в медицине для диагностики и лечения заболевании, вызываемых патогенами, прежде всего микроорганизмами и их токсинами. С помощью биосенсоров (см. выше), сконструированных на основе МАТ, диагностируют беременность, выявляют предрасположенность к диабету, ревматоидному артриту, диагностируют наследственные заболевания. Используют МАТ также для диагностики и лечения рака, СПИДа и т. д.

Рынок сбыта биотехнологических продуктов, предназначенных для иммунотерапии, непрерывно растет: в США в 1987 г. его объем равнялся 1,5 млрд. долл., а к 1993 г. ожидается, что он составит 8,6 млрд. долл. Вне медицины мат. широко используют в биологических датчиках (биосенсорах), применяемых для тестирования качества пищевой продукции, для диагностики болезней животных и растений.

Еще одно новое направление в иммунобиотехнологии - получение каталитических антител, абизимов, соединяющих в себе каталитический центр фермента и связывающий центр антитела. Некоторые абизимы уже начинают производиться промышленностью. В качестве примера такого абизима можно привести МАТ к фосфонамидату, которые способны катализировать гидролиз карбоксамида.