Июнь
15

Получение антибиотиков.

Антибиотики вырабатываются микроорганизмами в результате совместного действия продуктов 10 - 30 генов, что усложняет использование генно-инженерных подходов для управления их синтезом. Однако данная проблема разрешима в тех случаях, когда синтез антибиотиков определяется мультиферментными комплексами, кодируемыми одним опероном (например, в случае антибиотиков пептидной природы). Это открывает новые перспективы в биотехническом получении антибиотиков. Внедрение соответствующих генов из одного микроорганизма в клетки другого близкородственного может приводить к получению “гибридного” антибиотика, обладающего новыми свойствами. Этот подход был успешно применен в 1988 г. биохимиком Михаэлем Хопвудом в США. При объединении генов биосинтеза актинородина и медермицина был получен новый антибиотик, получивший название “медерродин”. В другом случае этот же автор создал штамм, продуцирующий “гибридный” антибиотик дигидрогранатиродив. Высокая продуктивность штаммов микроорганизмов иногда достигалась за счет увеличения в клетках количества копий генов биосинтеза антибиотика. Таким образом, удалось, например, существенно увеличить выход актинородина.

Широко применяют антибиотики в медицине, сельском хозяйстве (для лечения, а также для улучшения роста и развития молодняка), в пищевой промышленности (консервирующие средства). В 1987 г. за рубежом стоимость всех антибиотиков, использованных в качестве антибактериальных препаратов, составила 3,5 млрд. долл.; ожидается, что в 1992 г. она достигнет 4,2 млрд. долл.

В борьбе с болезнетворными бактериями вместо антибиотиков иногда используют другую бактерию - антагонист патогенного штамма. Примером может служить дикий патогенный штамм бактерии Streptococcus mutans, разрушающий зубную эмаль и дентин. При введении в ротовую полость мутантного штамма этого же вида выделяется белковый продукт, губительный для дикого штамма. В данном случае бактерии-антагонисты выступают в роли биостерилизаторов. Описаны аналогичные способы защиты сельскохозяйственных растений. В частности, это относится к инфекционному заболеванию рассады томатов, вызываемому почвенными бактериями Fusarium oxysporum. Заболевание связано с действием фузаровой кислоты, продуцируемой этими бактериями. В качестве биостерилизатора в этом случае используют клетки Pseudomonas solanactarum, способные накапливать фузаровую кислоту и этим снижать ее токсичнjt воздействие на томаты.

Май
27

Биосенсоры.

Высокочувствительные искусственные элементы биологической природы, способные распознавать микроколичества газообразных, жидких и твердых веществ, называют биосенсорами. Их используют в качестве датчиков аналитических приборов в промышленности, сельском хозяйстве, здравоохранении, охране окружающей среды.

Биосенсоры основаны на способности биологических молекул с очень высокой избирательностью и чувствительностью распознавать другие вещества и вступать с ними во взаимодействия - образовывать с ними комплексы, расщеплять и придавать им новые свойства. Поскольку биомолекул в живой природе бесчисленное разнообразие и многие из них способны распознавать определенные вещества, мы имеем неисчерпаемый источник биосенсоров. Первые биосенсоры были предложены американскими исследователями Л. Кларком и X. Лионсом в 1962 г., после чего началось их массовое использование. Биосенсоры стали применять в медицине и в химической технологии для выявления таких широко распространенных веществ, как углеводы, мочевина, креатинин, лактат, спирт, аскорбат, аспирин, аминокислоты. Сейчас в стадии внедрения в промышленное производство находятся биосенсоры для анализа газов и легколетучих веществ.

Май
09

Иммобилизация ферментов.

Все шире применяют в производстве иммобилизацию ферментов на носителях. Это позволяет увеличивать их стабильность, получать более чистые продукты реакции, облегчать восстановление и повторное использование биокатализаторов, например, при создании биосенсоров, о которых пойдет речь дальше. Одно из достижений биотехнологии - выделение ферментов из термофильных бактерий. Они термостабильны, что ценится промышленным производством. В частности, в органическом синтезе широко применяют никель-содержащую гидрогеназу из Methanobacterium thermoautotrop. Надо сказать, что большинство ферментов примышленного пользования получают из микроорганизмов и грибов. Только редкие ферменты растительного и животного происхождения (например, папаин, получаемый из плодов папайи) находят промышленное применение.

Ферменты из микроорганизмов все чаще заменяют используемые в некоторых отраслях промышленности аналогичные растительные и животные ферменты. Так, в пивоварении и хлебопечении амилазы Bacillus и Aspergillus сейчас заменили амилазы из пшеничного солода и ячменя, а протеазы из Aspergillus заменили животные и растительные протеазы, употребляемые для размягчения мяса.

Из 2 тыс. известных сейчас ферментов только около 10% ( - 200) вовлечено в промышленное производства Большой практический интерес представляют, в частности, аминоацилаза, применяемая для разделения смесей изомеров аминокислот, целлюлаза, осуществляющая гидролиз целлюлозы в глюкозу, инвертаза, используемая для получения инвертированного сахара, и др.

Апр
22

Биотехнологическое получение антибиотиков.

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).

Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.

До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.

Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.