Май
10

Растительные клетки - объекты биотехнологии.

Новый этап развития биотехнологии связан в первую очередь с использованием растительных клеток. Уже сейчас из растений получают около 25% фармацевтических препаратов. Они - сырье для тонкой химии, а также источник биохимических компонентов для косметических изделий и пищевых добавок. Биотехнология стремится повысить выход ценных продуктов растений, если нужно, специалисты изменяют их свойства, а также прививают им способность производить новые, не свойственные для них виды продуктов.

Благодаря новейшим открытиям молекулярной биологии и генетики и достижениям генной инженерии растения стали быстро вовлекать в сферу биотехнологии. Этому способствует ряд особенностей жизнедеятельности и размножения растений - способность к неограниченному вегетативному размножению, т. е. к регенерации полноценного растения из черенка, а в условиях биотехнологических систем - из небольшой группы клеток и даже из одной клетки. При культивировании в питательных средах растительные клетки способны в одних условиях неограниченно размножаться, быстро наращивать биомассу, в других - дифференцироваться, образовывать корешки, стебельки, листочки (формируя в пробирке миниатюрное растеньице), а затем переходить к цветению и плодоношению. Таким образом, весь свой биологический цикл растения могут осуществлять в контролируемых условиях биотехнологических систем. Оказывая на развивающиеся в этих условиях растения физические, химические и иные воздействия, можно направленно улучшать культивируемые сорта, повышать их продуктивность, использовать растительные клетки в качестве продуцентов биологически активных веществ.

Благодаря биотехнологии традиционные методы гибридизации растений (приведшие к “зеленой революции”, т. е. кардинальному повышению урожайности) расширились и стали проводиться на клеточном уровне. С помощью новых методов клеточной инженерии теперь сливают друг с другом клетки разных растений и получают из них новые гибридные растения. Новые методы чрезвычайно расширили границы спектра скрещиваемых растений, куда вошли не скрещивающиеся в природе виды. Однако техническая возможность соединения клеток очень отдаленных видов растений не всегда означает преодоление их биологической несовместимости, поэтому не все гибриды могут сохраняться.

Май
09

Иммобилизация ферментов.

Все шире применяют в производстве иммобилизацию ферментов на носителях. Это позволяет увеличивать их стабильность, получать более чистые продукты реакции, облегчать восстановление и повторное использование биокатализаторов, например, при создании биосенсоров, о которых пойдет речь дальше. Одно из достижений биотехнологии - выделение ферментов из термофильных бактерий. Они термостабильны, что ценится промышленным производством. В частности, в органическом синтезе широко применяют никель-содержащую гидрогеназу из Methanobacterium thermoautotrop. Надо сказать, что большинство ферментов примышленного пользования получают из микроорганизмов и грибов. Только редкие ферменты растительного и животного происхождения (например, папаин, получаемый из плодов папайи) находят промышленное применение.

Ферменты из микроорганизмов все чаще заменяют используемые в некоторых отраслях промышленности аналогичные растительные и животные ферменты. Так, в пивоварении и хлебопечении амилазы Bacillus и Aspergillus сейчас заменили амилазы из пшеничного солода и ячменя, а протеазы из Aspergillus заменили животные и растительные протеазы, употребляемые для размягчения мяса.

Из 2 тыс. известных сейчас ферментов только около 10% ( - 200) вовлечено в промышленное производства Большой практический интерес представляют, в частности, аминоацилаза, применяемая для разделения смесей изомеров аминокислот, целлюлаза, осуществляющая гидролиз целлюлозы в глюкозу, инвертаза, используемая для получения инвертированного сахара, и др.

Апр
26

Начальный этап развития биотехнологии.

На начальном этапе своего развития биотехнология в основном пользовалась живыми системами в том виде, в каком они существовали в природе. Следующий шаг - использование традиционных методов селекции (искусственного отбора) микроорганизмов, растений и животных, получение более продуктивных штаммов, линий. В последние 10 - 15 лет целенаправленнее улучшение свойств живых систем как объектов биотехнологии резко ускорилось и расширилось после того, как с середины 70-х до середины 80-х гг. были разработаны методы генной инженерии. Сначала это были методы рекомбинирования и конструирования очищенных из клеток генов. На следующем этапе были усовершенствованы методы переноса генов в микроорганизмы, а в конце 70-х годов отработаны подходы к переносу генов в культивируемые клетки животных.

В 1980 - 1982 гг. появились методы переноса генов в целые (многоклеточные) животные организмы и почти одновременно - методы переноса генов в растительные клетки и в целые растения. Микроорганизмы, а также клетки, растущие вне организма, после переноса в них новых генов называют генетически трансформированными клетками. Трансформированными можно называть и многоклеточные организмы - животные, растения, но чаще их обозначают как трансгенные животные и растения. Генетический материал переносят в клетки и организмы с помощью разных методов. В микроорганизмы гены вводят в составе кольцевых молекул.

Особые приемы используют для переноса генов в целые животные организмы. Один из них заключается в том, что очищенные гены впрыскивают в только что оплодотворившиеся яйцеклетки (зиготы) с помощью шприца и микропипетки, кончик которой (с внутренним диаметром ~1 мкм) вводят непосредственно в ядро. Ген можно перенести в эмбрион и с помощью вирусов. Существует 2 подхода переноса генов в растения. Первый состоит в том, что гены вводят в изолированные клетки, лишенные полисахаридных стенок (такие клетки называют протопластами). Затем из этих клеток получают целые растения. При другом подходе используют ДНК (Ti-плазмиду) микроорганизма Agrobacterium tumefaciens, способного заражать растительные клетки и переносить в них часть Ti-плазмиды вместе с любой содержащейся в ней чужой ДНК. Переносимый ген предварительно вводят в эту часть Ti-плазмиды. Напомним, что плазмиды - кольцевые молекулы ДНК, присутствующие в клетках вне хромосом.

Естественно, что в небольшой по объему заметке невозможно рассказать в полной мере обо всех аспектах современной биотехнологии. Поэтому наша цель - ознакомить интересующихся лишь с основными, наиболее перспективными направлениями биотехнологических работ.

Апр
12

Примеры биотехнологических подходов.

Ниже мы приводим некоторые, на наш взгляд наиболее интересные примеры, иллюстрирующие возможности современных биотехнологических подходов основанных на генной инженерии. Как уже говорилось, один из методических приемов переноса генов состоит в пользовании патогенной бактерии Agrobacterium tumefaciens, которая содержит Ti-плазмиду, ответственную за индукцию (побуждение) опухолей у двудольных растений. Технология введения чужеродных генов в эту плазмиду и последующее заражение растений агробактерией с измененной Ti-плазмидой на сегодняшний день наиболее хорошо отработана.

Растения - источник пищи и в принципе обеспечивают потребности человека и животных набором тех соединений, которые клетки животных и человека не синтезируют сами. К таким соединениям относятся и так называемые незаменимые аминокислоты, и многие витамины. Вместе с тем основные виды используемых в пищу растений неполноценны, т. е. дефицитны (для животных) по некоторым аминокислотам. В такие растительные корма необходимо добавлять некоторые аминокислоты - лизин, треонин, триптофан. Бобовые дефицитны по метионину и цистеину.

Для сбалансирования растительных кормов налажено специальное крупномасштабное микробиологическое промышленное производство этих аминокислот. Однако решение проблемы нельзя считать окончательным. Считается, что генная инженерия может кардинально упростить решение этой задачи. В настоящее время уже выделены гены запасаемых белков картофеля (пататин), фасоли (фазеолин), гороха (легуин), кукурузы (зеин), которые составляют основу кормов. Многие из этих генов удалось перенести в растения.

Что специалисты ожидают получить от этих манипуляции? Изменить эти гены таким образом, чтобы в кодируемых ими запасных белках увеличилось содержание дефицитных аминокислот. Есть, правда, опасение, что такая модификация структуры белков будет препятствовать их нормальному “складированию” в семенах. Кроме того, эти белки во многих случаях выполняют определенные функции в клетках, которые после модификации могут блокироваться. Другая идея - использовать искусственно (химически) синтезированные гены, кодирующие в большом количестве незаменимые аминокислоты. Такие эксперименты уже проводят о картофелем для повышения в нем содержания ценных аминокислот.