Июнь
21

Биогеотехнология.

Микроорганизмы, обитающие в недрах Земли, широко используются в биогеотехнологии - добыче, превращении и переработке природных ископаемых, нефти и газа. Биогеотехнология получения металлов эксплуатирует способности отдельных микроорганизмов переводить металлы в растворимые соединения (выщелачивание металлов из руды) Thiobacillus ferrooxydans выщелачивает железо, медь и другие металлы с помощью окисления серной кислоты, которую образуют эти микроорганизмы из сульфида. Chromobacterium violaceum способна растворять золото, реализуя процесс Au->-Au (CN)4. Получены высокоэффективные штаммы Pseudomonas и термофильной бактерии Sulfolobus для удаления серы из угля - одной из важнейших экологических проблем. Ведь, сгорая, уголь сильно загрязняет окружающую среду серой.

Для извлечения металлов из сточных вод перспективны штаммы Cilrobacter sp. и Zoogloea, способные накапливать уран, медь, кобальт. Получены мутанты Cilrobacter sp. с высоким уровнем фермента фосфатазы. Такие сверхпродуценты в 2,5 раза быстрее накапливают уран, чем родительский штамм. Это связано с осаждением металла на поверхности клеток в результате энзиматического освобождения неорганического фосфата.

Бактерии родов Rliodococcus и Nocardia sp. используют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Обещают стать ценными очистителями среды галобактерии. Некоторые из штаммов этих бактерий уже с успехом применяют для удаления мазута с песчаных пляжей. Наряду с природными бактериями перспективна деятельность генно-инженерных штаммов. Уже удалось перенести плазмиды с генами ферментов, расщепляющих октан, камфару, нафталин и ксилол, в Pseudomonas sp. Получен штамм, способный эффективно утилизировать сырую нефть. В ближайшее время он будет включен в арсенал средств биотехнологической очистки от загрязнений.

Мы видим, что биотехнология, уже внедрившаяся в промышленность, активно и эффективно включается в решение экологических проблем. Именно с ней связаны надежды, что удастся создать экологически чистые и экономически высокоэффективные производства, которые придут в XXI в. на смену нынешним.

Июнь
11

Инсулин.

В норме он вырабатывается бета-клетками островков Лангерганса поджелудочной железы и поддерживает содержание сахара в крови на уровне 1%, Отклонения от этого уровня приводят к тяжелым последствиям, в частности, возникает сахарный диабет - одно из наиболее широко распространенных и неизлечимых заболеваний. При тяжелых формах диабета больному может помочь только систематическое введение гормона. Впервые это было сделано в 1922 г. в Торонто: больному был инъецирован экстракт поджелудочной железы собаки. Полученный положительный терапевтический эффект положил начало использованию препаратов, содержащих инсулин свиньи и коровы.

В 1982 г. начался новый этап в биотехнологическом производстве человеческого инсулина, ибо удалось осуществить функционирование клонированного гена инсулина человека в клетках кишечной палочки. Получены дрожжи-продуценты нормального человеческого инсулина, а с помощью методов белковой инженерии созданы продуценты производных форм инсулина, характеризующихся улучшенными свойствами. В настоящее время генно-инженерный инсулин производят фирмы разных стран. Использование новой биотехнологии в значительной мере удешевило инсулин, а потенциальные масштабы производства обещают полностью удовлетворить существующие потребности в этом продукте.

Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Май
24

Прикладная энзимология.

Ожидается, что прикладная энзимология затронет также область промышленной модификации сахаров и спиртов, эстерификацию олигосахаридов и рибофлавина (витамина В2) и др. Для повышения выхода конечного продукта, упрощения ферментативных процессов и повышения их производственной эффективности в нынешние технологии получения и использования ферментов внедряют генно-инженерные методы. Хороший пример - сыроварение, в котором одновременно используют молочнокислые бактерии и фермент химозин из желудка телят. Клонированный ген прохимозина коровы был перенесен в молочнокислые бактерии Lactococcus и Leuconosloc. Трансформированные молочнокислые бактерии приобрели способность продуцировать химозин что упростило технологию производства сыра. Генно-инженерный (рекомбинатный) пепсиноген, предшественник желудочного фермента пепсина свиньи, получают в клетках Bacillus brevis, трансформированных плазмидой, содержащей ген пепсиногена.

Для повышения термостабильности ферментов в последние годы с помощью генно-инженерных подходов клонируют соответствующие гены из термофильных бактерий и переносят их в клетки продуцентов. Так, для получения из крахмала высокоочищенной глюкозы используют термостабильную а-амилазу Bacillus, продуцируемую Е. coli.

Биотехнологические процессы, состоящие из нескольких ферментативных актов, удается упростить благодаря включению в хромосому одной бактерии всех генов, кодирующих эти ферменты. Таким способом уже удалось в одном ферментационном чане превращать крахмал в фруктозную патоку, ранее для этого процесса требовалось 3 разных фермента - А-амилаза, глюкоамилаза и глюкоизомераза. Для модификации активных центров ферментов и усиления их каталитической активности специалисты возлагают большие надежды на разрабатываемые методы белковой инженерии.