Июнь
18

Против бешенства.

На основе рекомбинантного вируса коровьей оспы, несущего ген гликопротеида вируса бешенства, создано новое поколение вакцин против бешенства.

Суть метода генно-инженерного получения живых вакцин отражена далее. В рекомбинантную молекулу ДНК с геном тимидинкиназы (ТК) вируса вакцины оставляют ген другого вируса (герпеса, гепатита, вазикулярного стоматита или др.). Нормальный вирус вакцины и составную плазмиду переносят в клетки животных, в которых собственный ген. тимидинкиназы не работает (ТК-клетки). Ввиду наличия гомологии (схожести) между вирусной и плазмидной ДНК (общее у них - тимидинкиназный ген) между ними происходит гомологичная рекомбинация. Клетки, в которых такая рекомбинация не произошла, становятся ТК (за счет работы тимидинкиназного гена вируса вакцины), а клетки с рекомбинантным вирусом остаются ТК, что и позволяет их отселектировать (разделить). Такие составные вирусы используют затем в качестве живых безопасных вакцин. Вставляя в вирус вакцины одновременно гены разных вирусом, можно создавать мультивалентную вакцину против нескольких вирусов одновременно.

Получение биологически активных белков с помощью культивируемых клеток животных проводится в промышленных масштабах с использованием ферментеров - специальных культиваторов, в которых можно выращивать клетки в больших количествах. Самый крупный ферментер для культивирования животных клеток-продуцентов создан фирмой Cellthech. Его объем 2000 л, а производительность - 15 кг МАТ в год. Существует проект ферментера на 10 000 л.

Потребность в продуктах, синтезируемых клетками животных, непрерывно растет. В 1990 г. рынок сбыта (потребность) одного из таких продуктов - эритропоэтина - оценен в 400 - 750 млн. долл. В 1987 г. в США было продано рекомбинантных вакцин на сумму 745 млн. долл. Ожидается, что в 1993 г. эта сумма возрастет до 4,5 млрд. долл. Для диагиостикумов иммунных заболеваний (главным образом СПИДа), создаваемых на основе антител, только в США рынок сбыта составлял в 1987 т. 167,2 млн. долл., а к 1992 г. он достигнет, как ожидается, 294 млн. долл.

Июнь
15

Получение антибиотиков.

Антибиотики вырабатываются микроорганизмами в результате совместного действия продуктов 10 - 30 генов, что усложняет использование генно-инженерных подходов для управления их синтезом. Однако данная проблема разрешима в тех случаях, когда синтез антибиотиков определяется мультиферментными комплексами, кодируемыми одним опероном (например, в случае антибиотиков пептидной природы). Это открывает новые перспективы в биотехническом получении антибиотиков. Внедрение соответствующих генов из одного микроорганизма в клетки другого близкородственного может приводить к получению “гибридного” антибиотика, обладающего новыми свойствами. Этот подход был успешно применен в 1988 г. биохимиком Михаэлем Хопвудом в США. При объединении генов биосинтеза актинородина и медермицина был получен новый антибиотик, получивший название “медерродин”. В другом случае этот же автор создал штамм, продуцирующий “гибридный” антибиотик дигидрогранатиродив. Высокая продуктивность штаммов микроорганизмов иногда достигалась за счет увеличения в клетках количества копий генов биосинтеза антибиотика. Таким образом, удалось, например, существенно увеличить выход актинородина.

Широко применяют антибиотики в медицине, сельском хозяйстве (для лечения, а также для улучшения роста и развития молодняка), в пищевой промышленности (консервирующие средства). В 1987 г. за рубежом стоимость всех антибиотиков, использованных в качестве антибактериальных препаратов, составила 3,5 млрд. долл.; ожидается, что в 1992 г. она достигнет 4,2 млрд. долл.

В борьбе с болезнетворными бактериями вместо антибиотиков иногда используют другую бактерию - антагонист патогенного штамма. Примером может служить дикий патогенный штамм бактерии Streptococcus mutans, разрушающий зубную эмаль и дентин. При введении в ротовую полость мутантного штамма этого же вида выделяется белковый продукт, губительный для дикого штамма. В данном случае бактерии-антагонисты выступают в роли биостерилизаторов. Описаны аналогичные способы защиты сельскохозяйственных растений. В частности, это относится к инфекционному заболеванию рассады томатов, вызываемому почвенными бактериями Fusarium oxysporum. Заболевание связано с действием фузаровой кислоты, продуцируемой этими бактериями. В качестве биостерилизатора в этом случае используют клетки Pseudomonas solanactarum, способные накапливать фузаровую кислоту и этим снижать ее токсичнjt воздействие на томаты.

Июнь
11

Борьба с сорняками.

Следующее направление генно-инженерных работ - создание гербицидустойчивых ценных видов культурных растений, с тем чтобы эффективнее бороться с сорняками. Традиционные методы селекции создания сортов, устойчивых к гербицидам, очень длительны и малорезультативны. Поэтому и здесь большие надежды связывают с использованием генной инженерии. Пока можно говорить об отдельных примерах. Осуществлен успешный перенос гена устойчивости к гербицидам из Streptomyces в клетки сахарной свеклы. После этого регенерировавшие из них растения приобрели устойчивость к гербициду фосфинотрициану. Этим же путем удалось получить устойчивые к гербицидам растения табака.

Есть еще одна интересная область применения генной инженерии. В размягчении плодов помидоров при их хранении, ухудшающем потребительские качества плодов, участвует фермент полигалактуронидаза (ПГУ). Естественно желание подавить активность этого фермента в созревающих помидорах. Методом генной инженерии сконструирован ген, транскрипция которого приводит к образованию вместо природной мРНК фермента анти-мРНК (т. е. РНК, комплементарную нормальной мРНК). В результате в клетках растения, в которое перенесен искусственно созданный ген, накапливается анти-мРНК, которая ингибирует природную мРНК. Механизм подавления мРНК ПГУ в клетках томатов представляется следующим образом: накапливающиеся в клетках молекулы анти-ПГУ мРНК вступают в комплекс с мРНК ПГУ, в результате чего последняя не в состоянии транслироваться. Анти-мРНК в данном случае действуют подобно антителам, инактивирующим антигены.

Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.