Июнь
21

Биогеотехнология.

Микроорганизмы, обитающие в недрах Земли, широко используются в биогеотехнологии - добыче, превращении и переработке природных ископаемых, нефти и газа. Биогеотехнология получения металлов эксплуатирует способности отдельных микроорганизмов переводить металлы в растворимые соединения (выщелачивание металлов из руды) Thiobacillus ferrooxydans выщелачивает железо, медь и другие металлы с помощью окисления серной кислоты, которую образуют эти микроорганизмы из сульфида. Chromobacterium violaceum способна растворять золото, реализуя процесс Au->-Au (CN)4. Получены высокоэффективные штаммы Pseudomonas и термофильной бактерии Sulfolobus для удаления серы из угля - одной из важнейших экологических проблем. Ведь, сгорая, уголь сильно загрязняет окружающую среду серой.

Для извлечения металлов из сточных вод перспективны штаммы Cilrobacter sp. и Zoogloea, способные накапливать уран, медь, кобальт. Получены мутанты Cilrobacter sp. с высоким уровнем фермента фосфатазы. Такие сверхпродуценты в 2,5 раза быстрее накапливают уран, чем родительский штамм. Это связано с осаждением металла на поверхности клеток в результате энзиматического освобождения неорганического фосфата.

Бактерии родов Rliodococcus и Nocardia sp. используют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Обещают стать ценными очистителями среды галобактерии. Некоторые из штаммов этих бактерий уже с успехом применяют для удаления мазута с песчаных пляжей. Наряду с природными бактериями перспективна деятельность генно-инженерных штаммов. Уже удалось перенести плазмиды с генами ферментов, расщепляющих октан, камфару, нафталин и ксилол, в Pseudomonas sp. Получен штамм, способный эффективно утилизировать сырую нефть. В ближайшее время он будет включен в арсенал средств биотехнологической очистки от загрязнений.

Мы видим, что биотехнология, уже внедрившаяся в промышленность, активно и эффективно включается в решение экологических проблем. Именно с ней связаны надежды, что удастся создать экологически чистые и экономически высокоэффективные производства, которые придут в XXI в. на смену нынешним.

Июнь
15

Получение антибиотиков.

Антибиотики вырабатываются микроорганизмами в результате совместного действия продуктов 10 - 30 генов, что усложняет использование генно-инженерных подходов для управления их синтезом. Однако данная проблема разрешима в тех случаях, когда синтез антибиотиков определяется мультиферментными комплексами, кодируемыми одним опероном (например, в случае антибиотиков пептидной природы). Это открывает новые перспективы в биотехническом получении антибиотиков. Внедрение соответствующих генов из одного микроорганизма в клетки другого близкородственного может приводить к получению “гибридного” антибиотика, обладающего новыми свойствами. Этот подход был успешно применен в 1988 г. биохимиком Михаэлем Хопвудом в США. При объединении генов биосинтеза актинородина и медермицина был получен новый антибиотик, получивший название “медерродин”. В другом случае этот же автор создал штамм, продуцирующий “гибридный” антибиотик дигидрогранатиродив. Высокая продуктивность штаммов микроорганизмов иногда достигалась за счет увеличения в клетках количества копий генов биосинтеза антибиотика. Таким образом, удалось, например, существенно увеличить выход актинородина.

Широко применяют антибиотики в медицине, сельском хозяйстве (для лечения, а также для улучшения роста и развития молодняка), в пищевой промышленности (консервирующие средства). В 1987 г. за рубежом стоимость всех антибиотиков, использованных в качестве антибактериальных препаратов, составила 3,5 млрд. долл.; ожидается, что в 1992 г. она достигнет 4,2 млрд. долл.

В борьбе с болезнетворными бактериями вместо антибиотиков иногда используют другую бактерию - антагонист патогенного штамма. Примером может служить дикий патогенный штамм бактерии Streptococcus mutans, разрушающий зубную эмаль и дентин. При введении в ротовую полость мутантного штамма этого же вида выделяется белковый продукт, губительный для дикого штамма. В данном случае бактерии-антагонисты выступают в роли биостерилизаторов. Описаны аналогичные способы защиты сельскохозяйственных растений. В частности, это относится к инфекционному заболеванию рассады томатов, вызываемому почвенными бактериями Fusarium oxysporum. Заболевание связано с действием фузаровой кислоты, продуцируемой этими бактериями. В качестве биостерилизатора в этом случае используют клетки Pseudomonas solanactarum, способные накапливать фузаровую кислоту и этим снижать ее токсичнjt воздействие на томаты.

Май
22

Методы культивирования.

Все, о чем мы рассказываем, - еще не полностью готовые производственные биотехнологии, а лишь подготовка базы для их создания. Существует два тесно взаимосвязанных варианта будущего биотехнологического производства ценных продуктов из растений; культивирование целых растений и культивирование клеток.

Методы культивирования растительных клеток в питательных средах создали самостоятельную отрасль биотехнологического производства ценных препаратов. Если культуру получать из одной клетки, то все вновь выросшие клетки будут генетически идентичны и образуют клон. Такие клоны интенсивно размножающихся клеток, как и бактериальные культуры, - хорошие продуценты ценных растительных продуктов. Их производительность и экономичность зачастую значительно выше, чем у целых растений. Здесь, как и при работе с бактериями, можно использовать клетки, которые в растениях производят нужный продукт, а можно целенаправленно изменить клетку с помощью методов генной инженерии, сделав ее ценным продуцентом необходимого продукта. В производстве уже используются клеточные культуры следующих природных продуцентов: клетки табака, производящие убихинон-10 (применяют как витамин), культуру клеток барбариса, продуцирующую ятрорризин (спазмолитическое лекарственное средство), клетки воробейника, производящие шиконин (используются при лечении ран, ожогов, геморроя). Однако промышленное производство этих культур, за исключением, например, продуцентов шиконина, пока экономически невыгодно. Требуется дальнейшее усовершенствование технологии культивирования клеток и повышение их продуктивности.

Несомненно, что область клеточных биотехнологий в ближайшем будущем, после того как реализует свои возможности генная инженерия, станет важнейшим источником ценных продуктов. Сначала будут получены трансгенные растения, а затем из них - высокопродуктивные культуры клеток. Например, трансгенные растения рапса, в которые введены гены лей-энкефалина и других нейропептидов человека, соединенные с частью гена альбумина , продуцируют около 1 мг ценного рекомбинантного белка на 1 т семян.

Апр
07

Пути профилактики и лечения СПИДа.

Здесь укажем некоторые звенья, воздействия на которое должно приводить к подавлению размножения вируса. После того как вирусная частица тем или иным путем попала в кровь, она проникает в “свои” клетки, т. е. Т-лимфоциты, на поверхности которых находится белок-рецептор, специфически узнаваемый поверхностными белками вируса. Этот белок-рецептор, названный CD, частично высовывается наружу из мембраны Т-лимфоцитов и имеет конфигурацию, комплементарную к наружной части поверхностного белка ВИЧ. Оба выступающих элемента мембранных белков подходят друг к другу как ключ к замку, и когда ВИЧ соприкасается с поверхностью Т-лимфоцита, они прочно соединяются, мембраны сливаются и содержимое вируса проникает в цитоплазму клетки. Только клетки, имеющие на поверхности Cbj-рецепторы, становятся мишенью ВИЧ и заражаются им.

Когда в цитоплазму клетки попадают компоненты вирусной частицы, обратная транскриптаза начинает по РНК строить молекулы вирусной ДНК, которые проникают в ядро и внедряются в хромосому, после более или менее продолжительного (иногда - годы) прерывания в неактивной форме находящаяся в хромосоме клетки ДНК вируса (провирус) вдруг, подобно молчавшему вулкану, начинает действовать, порождая новые частицы. В этом процессе участвуют клеточные ферменты, факторы и механизмы, так как (это очень важно) процесс транскрипции вирусной ДНК по механизму ничем не отличается от транскрипции любого клеточного гена. Значит, на этой стадии (транскрипции) очень трудно какими-либо лекарствами остановить размножение вируса, ибо они будут губительны и для генов клетки, притом не только содержащих вирус, но и всех других клеток организма.

Известно, что когда какой-либо вирус (например, гриппа) проникает в организм, к нему вырабатываются антитела - иммунная система мобилизуется. При заражении вирусом СПИД поначалу иммунная система вырабатывает антитела и к нему (многие диагностикумы на СПИД основаны, на обнаружении не самого вируса, а антител к нему). Поэтому на первом этапе, когда иммунная система борется с вирусом, его количество растет медленно, требуются годы, чтобы он достиг критической массы и преодолел сопротивление иммунной системы. Поскольку он поражает именно ее, то победа в конечном счете остается за вирусом, так как медленно, но верно Т4-лимфоциты выходят из строя.