Июнь
11

Инсулин.

В норме он вырабатывается бета-клетками островков Лангерганса поджелудочной железы и поддерживает содержание сахара в крови на уровне 1%, Отклонения от этого уровня приводят к тяжелым последствиям, в частности, возникает сахарный диабет - одно из наиболее широко распространенных и неизлечимых заболеваний. При тяжелых формах диабета больному может помочь только систематическое введение гормона. Впервые это было сделано в 1922 г. в Торонто: больному был инъецирован экстракт поджелудочной железы собаки. Полученный положительный терапевтический эффект положил начало использованию препаратов, содержащих инсулин свиньи и коровы.

В 1982 г. начался новый этап в биотехнологическом производстве человеческого инсулина, ибо удалось осуществить функционирование клонированного гена инсулина человека в клетках кишечной палочки. Получены дрожжи-продуценты нормального человеческого инсулина, а с помощью методов белковой инженерии созданы продуценты производных форм инсулина, характеризующихся улучшенными свойствами. В настоящее время генно-инженерный инсулин производят фирмы разных стран. Использование новой биотехнологии в значительной мере удешевило инсулин, а потенциальные масштабы производства обещают полностью удовлетворить существующие потребности в этом продукте.

Май
10

Биотехнология на основе клеток животных.

В последние годы значительные успехи достигнуты в биотехнологических работах, проводимых с использованием клеток животных. Уже длительное время применяют технику гибридизации животных клеток разного происхождения, а также перенос чужеродных генов в культивируемые клетки.

В середине 70-х годов вирусолог Рудольф Ениш (ФРГ) провел первый успешный эксперимент по переносу чужеродного гена в геном целого животного организма (мыши). В качестве переносчика гена (вектора) использовали вирус лейкоза мышей. В дальнейшем были отработаны различные варианты переноса генов в животных (трансгенные животные), включая прямую микроинъекцию в пронуклеус зиготы. Подобные эксперименты оказали решающее воздействие на вовлечение клеток животных в биотехнологию. Существенно то, что только на базе клеток животных можно получать такие важные для медицины биотехнологические продукты, как антитела и вакцины. Использование клеток животных для продуцирования других биологически активных продуктов пока, как правило, экономически менее выгодно, чем на базе микроорганизмов. Однако получить некоторые полноценные белки можно только из клеток животных.

Май
08

Топливом будущего считают водород.

Химический и электрохимический способы получения водорода неэкономичны. Поэтому специалисты обратили внимание на микроорганизмы, способные выделять водород. Еще в начале 60-х годов установили, что хлоропласты шпината в присутствии бактериального экстракта, содержащего фермент гидрогеназу, продуцируют водород. Это способны делать хемотрофные бактерии, цианобактерии, некоторые водоросли и простейшие. Сейчас предложено несколько вариантов биотехнологических систем для производства водорода, однако пока ни одна из них неприемлема для практических целей.

Не одно поколение ученых бьется над проблемой повышения эффективности фотосинтеза у микроорганизмов и растений. Задача эта еще далека от решения. Однако в результате исследований в области биологии фотосинтеза (в частности, выделения и характеристики различных мутантов фотосинтезирующих микроорганизмов) работы вышли на уровень, когда они могут стать основой для решения прикладных задач. Так, некоторые фотосинтезирующие микроорганизмы способны продуцировать аммоний за счет биоконверсии солнечной энергии. Поскольку гербициды подавляют фотосинтез, получение мутантов, не чувствительных к гербицидам - путь к созданию гербицидустойчивых сортов растений. Предполагается, что фотосинтезирующие бактерии будут участвовать в очистке промышленных газов, биодеградации токсических веществ и отходов производства.

Биотехнологической биоэнергетике предстоит ответить на вопросы, связанные с созданием биотопливных элементов, способных превращать химическую энергию субстратов в другие виды энергии, главным образом в электрическую. Такие элементы используют в настоящее время при создании биологических датчиков-биосенсоров.

Май
05

Введение.

Ученые полагают, что дальнейший прогресс человечества не только будет во многом зависеть от развития биотехнологии, но просто не сможет без нее обойтись, ибо иначе не удастся прокормить все растущее население Земли. Рассказывается о том, как на основе методов биотехнологии организуют производство медицинских препаратов, некоторых продуктов питания и кормов для животных.

При раскопках Вавилона была обнаружена дощечка, относящаяся к VI тысячелетию до н. э., на которой описан процесс приготовления пива. Это, вероятно, одно из древнейших письменных упоминаний о целенаправленном применении человеком в практике естественного биологического процесса. С древних времен известно использование и других биотехнологических процессов в различных сферах практической деятельности человека: в виноделии, хлебопечении, сбраживании молочных продуктов и т. д. Однако научный анализ биохимических механизмов, лежащих в основе этих биотехнологических процессов, был проведен лишь в XIX в. Луи Пастером.

Термин “биотехнология” впервые использовал венгр Карл Эреки в 1919 г. для обозначения работ, в которых продукты получают с помощью живых организмов. В Биологическом энциклопедическом словаре, изданном в 1986 г., биотехнологией называют использование живых организмов и биологических процессов в производстве. Европейская федерация биотехнологии (EFB) определяет современную биотехнологию как использование наук о природе (биологии, химии, физики) и инженерных наук (например, электроники) применительно к биосистемам в биоиндустрии, а Европейская комиссия (ЕС) дополняет - для того, чтобы снабдить биологическое сообщество требуемыми продуктами и услугами. Будучи древней сферой производства, биотехнология сегодня представляет собой ультрасовременный этап научно-технического прогресса.

На начальном этапе биотехнология опиралась главным образом на достижения микробиологов и энзимологов, а в последние 10 - 15 лет она получила мощный импульс к развитию со стороны наиболее интенсивно развивающихся областей биологии: вирусологии, молекулярной и клеточной биологии, молекулярной генетики.