Май
24

Прикладная энзимология.

Ожидается, что прикладная энзимология затронет также область промышленной модификации сахаров и спиртов, эстерификацию олигосахаридов и рибофлавина (витамина В2) и др. Для повышения выхода конечного продукта, упрощения ферментативных процессов и повышения их производственной эффективности в нынешние технологии получения и использования ферментов внедряют генно-инженерные методы. Хороший пример - сыроварение, в котором одновременно используют молочнокислые бактерии и фермент химозин из желудка телят. Клонированный ген прохимозина коровы был перенесен в молочнокислые бактерии Lactococcus и Leuconosloc. Трансформированные молочнокислые бактерии приобрели способность продуцировать химозин что упростило технологию производства сыра. Генно-инженерный (рекомбинатный) пепсиноген, предшественник желудочного фермента пепсина свиньи, получают в клетках Bacillus brevis, трансформированных плазмидой, содержащей ген пепсиногена.

Для повышения термостабильности ферментов в последние годы с помощью генно-инженерных подходов клонируют соответствующие гены из термофильных бактерий и переносят их в клетки продуцентов. Так, для получения из крахмала высокоочищенной глюкозы используют термостабильную а-амилазу Bacillus, продуцируемую Е. coli.

Биотехнологические процессы, состоящие из нескольких ферментативных актов, удается упростить благодаря включению в хромосому одной бактерии всех генов, кодирующих эти ферменты. Таким способом уже удалось в одном ферментационном чане превращать крахмал в фруктозную патоку, ранее для этого процесса требовалось 3 разных фермента - А-амилаза, глюкоамилаза и глюкоизомераза. Для модификации активных центров ферментов и усиления их каталитической активности специалисты возлагают большие надежды на разрабатываемые методы белковой инженерии.

Май
01

Новые сорта.

В результате этой сложной, но успешно проведенной работы был получен новый сорт помидоров с улучшенными свойствами, а именно - способностью более продолжительное время не размягчаться при хранении. Заметим, что на получение нового сорта традиционными методами требуется 10 и более лет, в этом случае сорт был получен всего за один сезон. Понятно, почему зарубежные фирмы (например, “Монсанта”) финансируют многомиллиардные научные исследования в области генной инженерии. В этой фирме разрабатывают методы переноса из бактерий в растения генов, кодирующих токсины, убивающие насекомых.

Токсический белок, продуцируемый микробом Bacillus Ihmingiensis, убивает личинок насекомых питающихся листьями. Этот токсин выделен в кристаллическом виде. Один из способов его использования - распыление на поверхность растения. Однако более экономичен и удобен перенос гена токсина в растения. В 1987 г. ген токсина, изолированный из бактерий успешно перенесли в геном табака. Его экспрессия привела к тому, что личинки насекомого Manduca secta погибал при скармливании листьев трансгенного растения

Аналогичные работы проводят с хлопчатником для придания ему устойчивости к гусеницам. Получены растения, содержащие тот же ген токсина. Кроме того, создан инсектицидоустойчивый трансгенный хлопчатник. В геном обычного хлопчатника введен ген ингибитора трипсина коровьего гороха, продукт которого подавляет активность протеаз в пищеварительной системе насекомых. Известны многие токсины, продуцируемые микроорганизмами и эффективно убивающие разные виды насекомых. Сейчас исследуют гены этих токсинов с целью создания, например, трансгенного картофеля, устойчивого к колорадскому жуку.

Март
26

Производство пищевых белков и аминокислот.

Уже давно микроорганизмы используют как источник белка для питания человека и животных. Еще в годы первой мировой войны один из основоположников молекулярной биологии Макс Дельбрюк с коллегами в Германии (в 1937 г. переехал в США) разработали первый технологический процесс промышленного культивирования пивных дрожжей для их добавления в супы и колбасы. Белки, продуцируемые бактериями или дрожжами и используемые в пищевых целях, получили название белки одноклеточных организмов (БОО).

На первом этапе в качестве сырья для микроорганизмов использовали в основном углеводороды нефти. Затем интерес был проявлен к другим субстратам, прежде всего к природным газам (метан). Как субстраты для получения БОО из дрожжей используют некоторые промышленные отходы (например, отработанный сульфитный щелок с бумажных комбинатов, молочную сыворотку - побочный продукт сыроварения, мелассу (патока), отходы спиртоводочных заводов). Промышленный продукт получают в виде суммарной биомассы. Разработаны промышленные линии для производства и переработки микроводорослей с целью получения БОО. Объем дрожжевой биомассы, полученной в мире в 1985 г., превысил 1 млн. т. Ожидается, что в 1990 г. этот объем возрастет более чем в 2 раза.

Производство БОО имеет многие преимущества перед производством белка в животноводстве и растениеводстве: 500 кг дрожжей дают за сутки 80 кг белков, а у быка того же веса суточный привес составляет в лучшем случае 500 г белка. Однако БОО используют в основном как корм для скота, и лишь в будущем можно ожидать создания технологий получения БОО, пригодных для питания человека. Перспективно в этом отношении культивирование некоторых грибов (Fusarium), зеленых водорослей (Chlorella), цианобактерий (Spirulina), имеющих адекватные для человека органолептические свойства. В настоящее время уже налажено производство на базе крахмала волокнистой массы Fusarium как источника пищи для человека.

Изменения в генах, осуществленные с помощью генной инженерии, могут модифицировать структуру и улучшать свойства пищевых белков. Наибольший интерес в плане таких манипуляций привлекают к себе 3 белка животных и растений: овальбумин курицы, составляющий большую часть (54%) белка яйца, казеины (главная фракция в молоке) и белки сои (42% в бобах). Например, манипуляции с кодирующей частью гена k-казеина, в результате которых из белка элиминировался фрагмент, расположенный между 9-й и 17-й аминокислотами, а также” цистеин, участвующий в образовании дисульфидной связи, привели к тому, что новый белок как пищевой продукт стал более качественным.

Март
22

Ферменты в медицине.

Не может обойтись без ферментов и медицина. Холестериноксидазу используют в диагностике для определения уровня холестерина в сыворотке крови. Продуцируемую грибами супероксиддисмутазу применяют для лечения артритов, болезней сердца и при трансплантации почек. Терапевтическими свойствами обладают белки стрептокиназа из Е. coli, аспарагиназа из Erwinia chrysantherni и др. Ферменты используют для растворения тромбов, удаления из организма токсических веществ, лечения рака, ожогов. Известно около 200 наследственных заболеваний, связанных с дефицитом ферментов или иных белковых факторов. Их лечение возможно путем введения в организм больных чужеродных ферментов замещающих отсутствующие эндогенные. При септических процессах, инфаркте миокарда, эмфиземе легких, панкреатите применяют ингибиторы ферментов протеаз, получаемые из актиномицетов (химостатин, антипаин и др.) и генно-инженерных штаммов эглии или дрожжей.

Перспективны ферменты и для синтеза тонких химических веществ и осуществления многих производственных процессов в пищевой и фармацевтической промышленности. К ним относятся ферменты, помогающие получать высокофруктозныи сироп, способствующие свертыванию молока, гидролизу лактоз и, белков и жиров, участвующие в синтезе полусинтетического пенициллина, аминокислоты L-лизина и др. Широко применяют в промышленности липазы различного происхождения, которые катализируют многие сложные химические процессы. Например, катализируемая липазой очистка пальмового масла используется для производства какосового масла, 30% которого содержится в шоколаде.

Амилазы из бактерии и грибов расщепляют крахмал до низкомолекулярных сахаров - декстринов, глюкозы, мальтозы. Бактериальные протеазы разрушают белки при выделке кожи, сыроварении. Фермент глюкоизомераза из Bacillus sp. помогает превращать глюкозу во фруктозу. В последнее время внимание привлечено к циклодекстринглюкозилтрансферазам (ЦДГТ), необходимым при производстве циклодекстринов - соединении, важных для химической и фармакологической промышленности, для улучшения качества пищи, производства косметики и т. д. В ближайшее пятилетие ожидается семикратное увеличение потребности в циклодекстринах. А разве могут обойтись без ферментов энзиматический синтез и модификация пептидов? Коммерческий интерес проявляют, например, к энзиматическому синтезу дипептида аспартама, - низкокалорийному пищевому сладкому агенту. Химически этот продукт получали путем соединения ангидрида формиласпарагиновой кислоты и метилового эфира L-фенилаланина. Этот процесс протекает неэффективно, и образующийся аспартам загрязнен другими продуктами реакции. Энзиматически же, с помощью термолизина, синтезируется только чистый аспартам, выход которого составляет больше 99%.