Июнь
20

СПИД.

Еще 10 лет назад слово СПИД отсутствовало в нашем лексиконе, а сейчас это заболевание встало В один ряд с другими реальными угрозами (ядерным оружием, экологией) глобального уничтожения человечества СПИД сигнализирует нам о том, что в преддверии XXI ” человечество, вооруженное до зубов достижениями научно-технического прогресса, не должно считать что страшные эпидемии, которые косили миллионы, остались позади. СПИД - это предостережение от чрезмерной амбициозности человека, считающего, что он многого достиг в сфере здравоохранения. Огромная опасность СПИДа состоит в том, что он - оружие природы над которым человек не властен в такой мере, как над ядерным и известными видами биологического и химического оружия. СПИД опасен еще и тем, что пульт управления этим оружием находится во власти не какой-то отдельной группы профессионалов военных и политиков а широких и, нередко, темных масс населения планеты. И поэтому неимоверно трудно заставить всех осознать опасность и остановить распространение СПИДа, ибо искоренить эту болезнь из популяции людей в ближайшие, по крайней мере, 10 - 20 лет будет невозможно. Носитель СПИДа уже прочно внедрился в хромосомы 10 млн. людей.

Коварство СПИДа заключается в том, что его возбудитель поражает не отдельные органы или системы органов человека - сердце, печень, легкие и т. д., а святая святых его “жизнеустойчивости” - защитные (иммунные) механизмы, призванные вырабатывать антитела против всех патогенов. В результате организм становится полностью безоружным против любой инфекции, смертельно опасной становится обыкновенная простуда. СПИД - это болезнь болезней, запрятанная в глубинах организма, и человек, пораженный им, может многие годы не подозревать о своей обреченности. СПИД - это болезнь конца XX в., о ней и его возбудителе медицина и биология узнали лишь в самое последнее время.

В 1983 г. Люк Монтанье и его коллеги в Институте им. Пастера (Париж) и параллельно Роберт Галло со своими коллегами в Национальном институте рака в США выделили и описали возбудитель СПИДа вирус иммунодефицита человека (ВИЧ), который относится к ретревирусам. Вскоре были разработаны диагностические тесты позволяющие быстро обнаруживать вирус в крови человека. Началось широкое обследование населения, прежде всего в “группе риска” - среди гомосексуалистов, проституток, наркоманов, а также у доноров крови и в имеющихся запасах крови. При этом выяснилось, что вирусоносителей значительно больше, чем больных.

Май
31

Преимущества и проблемы.

Обсуждая в 1989 г. на страницах журнала “Trends in Biotechnology” перспективы использования биотехнологий в разных сферах сельского хозяйства сотрудники Федерального института в Цюрихе Николаус Гоч и Петер Риндер пишут о значении таких направлений как клонирование и перенос в растения новых генов ответственных за устойчивость к заболеваниям и контролирующих образование важных с экономической точки зрения метаболитов. Предполагается, что до 2007 г. будет проведено картирование генов большинства используемых в сельском хозяйстве одно- и двудольных растений и реализован искусственный перенос в них дополнительных генов. Перспективы успешного переноса генов, ответственных за фиксацию молекулярного азота, пока оцениваются невысоко из-за трудности решения этой проблемы. На данном этапе повышение эффективности фиксации азота за счет симбиотических и несимбиотических микроорганизмов представляется весьма реальным.

Говоря о быстром прогрессе в области генной инженерии растений, следует обратить внимание и на то, что в самое последнее время возникло и ширится движение экологов, в частности “зеленых”, против генно-инженерных работ с растениями. Они опасаются, что растения, которым придана устойчивость к гербицидам, могут быстро распространиться в природе с непредсказуемыми последствиями для культурных растений. Эти опасения небезосновательны. Поэтому можно ожидать, что генная инженерия растений будет развиваться преимущественно в направлении биотехнологического их использования. Основное внимание будет отдано культивированию клеток таких растений, которые продуцируют ценные препараты, а не созданию сортов полевых растений, устойчивых к химическим и биологическим вредителям. Конечно, это не относится к созданию растений, устойчивых к экстремальным условиям среды, ибо размножение соле-, засухо-, морозоустойчивых растения в любом случае будет полезным. Ведуться работы по строгому контролированию процесса опыления, которые в случае успеха помогут снять существующие опасения. В некоторых лабораториях пытаются получить растения с неактивной пыльцой (женская стерильность), чтобы исключить распространение пыльцы трансгенных растений.

Май
22

Методы культивирования.

Все, о чем мы рассказываем, - еще не полностью готовые производственные биотехнологии, а лишь подготовка базы для их создания. Существует два тесно взаимосвязанных варианта будущего биотехнологического производства ценных продуктов из растений; культивирование целых растений и культивирование клеток.

Методы культивирования растительных клеток в питательных средах создали самостоятельную отрасль биотехнологического производства ценных препаратов. Если культуру получать из одной клетки, то все вновь выросшие клетки будут генетически идентичны и образуют клон. Такие клоны интенсивно размножающихся клеток, как и бактериальные культуры, - хорошие продуценты ценных растительных продуктов. Их производительность и экономичность зачастую значительно выше, чем у целых растений. Здесь, как и при работе с бактериями, можно использовать клетки, которые в растениях производят нужный продукт, а можно целенаправленно изменить клетку с помощью методов генной инженерии, сделав ее ценным продуцентом необходимого продукта. В производстве уже используются клеточные культуры следующих природных продуцентов: клетки табака, производящие убихинон-10 (применяют как витамин), культуру клеток барбариса, продуцирующую ятрорризин (спазмолитическое лекарственное средство), клетки воробейника, производящие шиконин (используются при лечении ран, ожогов, геморроя). Однако промышленное производство этих культур, за исключением, например, продуцентов шиконина, пока экономически невыгодно. Требуется дальнейшее усовершенствование технологии культивирования клеток и повышение их продуктивности.

Несомненно, что область клеточных биотехнологий в ближайшем будущем, после того как реализует свои возможности генная инженерия, станет важнейшим источником ценных продуктов. Сначала будут получены трансгенные растения, а затем из них - высокопродуктивные культуры клеток. Например, трансгенные растения рапса, в которые введены гены лей-энкефалина и других нейропептидов человека, соединенные с частью гена альбумина , продуцируют около 1 мг ценного рекомбинантного белка на 1 т семян.

Май
08

Генно-инженерное получение микроорганизмов-продуцентов.

В середине 70-х годов возникла новая экспериментальная технология - генетическая (или генная) инженерия, которая основана на конструировании рекомбинантной ДНК вне клетки (in vitro) и ее размножении в клетках микроорганизмов. В результате использования этой технологии стало возможным выделять индивидуальные гены, модифицировать, соединять друг с другом, получая “слитые гены”, продуцирующие белки с совершенно новыми свойствами (белковая инженерия).

Типичная схема получения и размножения (амплификации) индивидуального фрагмента ДНК (гена) приведена на рис. 2. В качестве векторов, т. е. молекул-носителей, в которых происходит размножение генов, используют плазмиды, бактериофаги и вирусы, способные размножаться в бактериальных клетках. После соединения (лигирования) вектора с фрагментом ДНК, несущим ген, образуется рекомбинантная ДНК. Затем вектор с геном вводят в клетки микроорганизмов (трансформация), где они амплифицируются. В результате получается множество копий одного гена - клон. Поэтому такой способ получения индивидуального гена называют клонированием.

Если для клонирования использовать ДНК человека, содержащую все его гены, они окажутся в разных клонах будет получена генная библиотека (клонотека) человека. Гены животных, человека и растений, клонируемые таким путем в бактериях (как правило, используют Е. coli), не функционируют в них. Для этого их нужно выделить из бактерии, снабдить регулятором бактериального гена и вновь ввести в бактерию. Получены и используются многие штаммы бактерий, в которых функционируют гены разного происхождения, производящие нужные продукты.

Этот арсенал новых, генно-инженерных, штаммов-продуцентов позволил наряду с продуктами природных штаммов (их называют биопродуктами первого поколения) начать производство на базе генно-инженерных штаммов рекомбинантные белки - биопродукцию второго поколения. Биопродукцией третьего поколения будут искусственно синтезированные соединения, полностью имитирующие биологические функции природных белков, но не являющиеся ими.

Генно-инженерные методы (технология рекомбинантных ДНК) все шире используют в биотехнологическом производстве прежде всего ценных для медицины белков, в том числе таких, которые трудно синтезировать химическими методами пли получить в нужных количествах из биологического материала. Это в первую очередь белки и пептиды (белковые молекулы, состоящие из небольшого числа аминокислот), которые синтезируются в организме человека и используются как медикаменты. Усилия генных инженеров направлены на создание бактерий-продуцентов, которые бы с высокой эффективностью производили такие биологически активные продукты. Основные трудности здесь заключаются не столько в конструировании продуцентов, сколько в том, чтобы синтезирующиеся в них чужеродные белки нормально формировались, модифицировались и не разрушались в клетках микроорганизмов.