Июнь
11

Борьба с сорняками.

Следующее направление генно-инженерных работ - создание гербицидустойчивых ценных видов культурных растений, с тем чтобы эффективнее бороться с сорняками. Традиционные методы селекции создания сортов, устойчивых к гербицидам, очень длительны и малорезультативны. Поэтому и здесь большие надежды связывают с использованием генной инженерии. Пока можно говорить об отдельных примерах. Осуществлен успешный перенос гена устойчивости к гербицидам из Streptomyces в клетки сахарной свеклы. После этого регенерировавшие из них растения приобрели устойчивость к гербициду фосфинотрициану. Этим же путем удалось получить устойчивые к гербицидам растения табака.

Есть еще одна интересная область применения генной инженерии. В размягчении плодов помидоров при их хранении, ухудшающем потребительские качества плодов, участвует фермент полигалактуронидаза (ПГУ). Естественно желание подавить активность этого фермента в созревающих помидорах. Методом генной инженерии сконструирован ген, транскрипция которого приводит к образованию вместо природной мРНК фермента анти-мРНК (т. е. РНК, комплементарную нормальной мРНК). В результате в клетках растения, в которое перенесен искусственно созданный ген, накапливается анти-мРНК, которая ингибирует природную мРНК. Механизм подавления мРНК ПГУ в клетках томатов представляется следующим образом: накапливающиеся в клетках молекулы анти-ПГУ мРНК вступают в комплекс с мРНК ПГУ, в результате чего последняя не в состоянии транслироваться. Анти-мРНК в данном случае действуют подобно антителам, инактивирующим антигены.

Июнь
10

Клетки животных - продуценты биологически активных веществ.

В настоящее время клонировано много генов, кодирующих важные для науки и практики белки. После переноса таких генов в клетки животных можно получать клетки - продуценты биологически активных белков. Белки, синтезируемые клетками животных, всегда полноценны, поскольку они правильно формируются и претерпевают все необходимые модификации (гликозилирование, карбоксилирование, гидроксилирование).

В наши дни в промышленных масштабах в биореакторах с помощью клеток животных налажено производство большого числа биологически активных белков которые используют как медицинские препараты. Наибольший интерес представляют эритропоэтин, активатора плазминогена, фактор свертывания крови антитрипсин, поверхностный белок вируса гепатита в интерлейкины, различные моноклональные антитела, антигены вируса СПИД.

Коротко о важнейших из них. Эритропоэтин гормон стимулирующий образование красных кровяных телец. Его используют при анемиях, обусловленных почечной недостаточностью (эритропоэтин синтезируется в почках). Факторы свертываемости крови VIII и IX используют яри лечении наследственной гемофилии для остановки кровотечений, активатор плазминогена, напротив, для предотвращения образования тромбов. Гормон роста - препарат для лечения карликовости, инсулин - для лечения диабета, гонадотропные гормоны (фолликулостимулирующий, лютеинизирующий, хорионический) - для нормализации или стимуляции функций яичника, антитрипсин - для лечения эмфиземы.

Быстро расширяется сфера биотехнологии, основанная на иммунологии, - иммунобиотехнология. Сюда относится индустрия диагностических тест-систем (диагностикумов) для широкого обследования распространенности инфекций, изготовление вакцин и, конечно, получение поликлональных и моноклональных антител. Все наслышаны о таких белках, как лимфокины, к которым относятся интерфероны, интерлейкины, фактор, стимулирующий колониеобразованне гранулоцитов и макрофагов, фактор некроза опухолей и некоторые другие. Эти белки секретируются клетками иммунной системы в ответ на появление внешнего антигена. Их используют в качестве противовирусных и противоопухолевых препаратов (возможность лечения ими злокачественных новообразований пока проблематична). Производство некоторых лимфокинов отлажено и в бактериальной системе, о чем мы уже говорили, но иногда клетки животных более приемлемы для этой цели, особенно для тех белков, которые содержат углеводный центр. Несколько подробнее остановимся на производстве антител. С давних пор для их получения используются животные - кролики, козы, бараны. На появление в крови чужеродного белка-антигена иммунная система реагирует активацией размножения В-лимфоцитов, в которых начинается синтез антител. На поверхности антигена обычно содержится несколько “активных” участков (антигенных детерминант), каждый из которых побуждает образование антител против себя. При этом к каждая В-клетка и ее потомки специализируются на синтезе одного сорта антител. В результате образуется столько разных видов антителообразующих В-клеток, сколько в антигене имеется детерминант. Получаемая при этом из крови антисыворотка содержит смесь антител к разным детерминантам. Такие антитела называют полиспецифическими, чаще - поликлональными.

Май
10

Вакцины.

Большое значение для медицины и сельского хозяйства имеют вакцины, которые вызывают активный иммунитет против инфекционных болезней. С помощью генной инженерии получены так называемые рекомбинантные вакцины.

Такой составной вирус экспрессировал слитый белок на поверхности инфицированных им клеток, растущих в культуре. При инъекциях этих клеток в цыплят почти все иммунизированные птицы были устойчивы к вирусу болезни Ньюкасле. Аналогичная живая вакцина была получена и для вируса бронхита птиц.

Отлажена техника изготовления вакцин-антигенов, которая заключается в клонировании и функционировании отдельных генов возбудителей болезней в Е. coli, дрожжах, клетках насекомых или млекопитающих. Вакцины-антигены высокостабильны, малоопасны как аллергены и неинфекционны. Одна из проблем, возникающая при использовании этих вакцин - наблюдающаяся низкая иммуногенность.

Чтобы пациенты легко переносили действие вакцин и для повышения их эффективности разработаны синтетические вакцины. Их создают с помощью соединения фрагментов белков, полисахаридов и других веществ микроорганизмов (к которым образуются антитела) с большими молекулами-носителями (адъювантами), которые усиливают иммуногенность антигенов. При этом к одной молекуле, стимулирующей иммунный ответ, могут быть присоединены фрагменты антигенов нескольких видов микробов и вирусов, что приводит к образованию поливакцин.

С помощью генной инженерии уже получены первые коммерчески доступные вакцины для человека пробактериального энтеротоксина, против гепатита Б.

Май
10

Растительные клетки - объекты биотехнологии.

Новый этап развития биотехнологии связан в первую очередь с использованием растительных клеток. Уже сейчас из растений получают около 25% фармацевтических препаратов. Они - сырье для тонкой химии, а также источник биохимических компонентов для косметических изделий и пищевых добавок. Биотехнология стремится повысить выход ценных продуктов растений, если нужно, специалисты изменяют их свойства, а также прививают им способность производить новые, не свойственные для них виды продуктов.

Благодаря новейшим открытиям молекулярной биологии и генетики и достижениям генной инженерии растения стали быстро вовлекать в сферу биотехнологии. Этому способствует ряд особенностей жизнедеятельности и размножения растений - способность к неограниченному вегетативному размножению, т. е. к регенерации полноценного растения из черенка, а в условиях биотехнологических систем - из небольшой группы клеток и даже из одной клетки. При культивировании в питательных средах растительные клетки способны в одних условиях неограниченно размножаться, быстро наращивать биомассу, в других - дифференцироваться, образовывать корешки, стебельки, листочки (формируя в пробирке миниатюрное растеньице), а затем переходить к цветению и плодоношению. Таким образом, весь свой биологический цикл растения могут осуществлять в контролируемых условиях биотехнологических систем. Оказывая на развивающиеся в этих условиях растения физические, химические и иные воздействия, можно направленно улучшать культивируемые сорта, повышать их продуктивность, использовать растительные клетки в качестве продуцентов биологически активных веществ.

Благодаря биотехнологии традиционные методы гибридизации растений (приведшие к “зеленой революции”, т. е. кардинальному повышению урожайности) расширились и стали проводиться на клеточном уровне. С помощью новых методов клеточной инженерии теперь сливают друг с другом клетки разных растений и получают из них новые гибридные растения. Новые методы чрезвычайно расширили границы спектра скрещиваемых растений, куда вошли не скрещивающиеся в природе виды. Однако техническая возможность соединения клеток очень отдаленных видов растений не всегда означает преодоление их биологической несовместимости, поэтому не все гибриды могут сохраняться.