Май
09

Иммобилизация ферментов.

Все шире применяют в производстве иммобилизацию ферментов на носителях. Это позволяет увеличивать их стабильность, получать более чистые продукты реакции, облегчать восстановление и повторное использование биокатализаторов, например, при создании биосенсоров, о которых пойдет речь дальше. Одно из достижений биотехнологии - выделение ферментов из термофильных бактерий. Они термостабильны, что ценится промышленным производством. В частности, в органическом синтезе широко применяют никель-содержащую гидрогеназу из Methanobacterium thermoautotrop. Надо сказать, что большинство ферментов примышленного пользования получают из микроорганизмов и грибов. Только редкие ферменты растительного и животного происхождения (например, папаин, получаемый из плодов папайи) находят промышленное применение.

Ферменты из микроорганизмов все чаще заменяют используемые в некоторых отраслях промышленности аналогичные растительные и животные ферменты. Так, в пивоварении и хлебопечении амилазы Bacillus и Aspergillus сейчас заменили амилазы из пшеничного солода и ячменя, а протеазы из Aspergillus заменили животные и растительные протеазы, употребляемые для размягчения мяса.

Из 2 тыс. известных сейчас ферментов только около 10% ( - 200) вовлечено в промышленное производства Большой практический интерес представляют, в частности, аминоацилаза, применяемая для разделения смесей изомеров аминокислот, целлюлаза, осуществляющая гидролиз целлюлозы в глюкозу, инвертаза, используемая для получения инвертированного сахара, и др.

Апр
26

Использование невесомости.

Пилотируемые и автоматические системы существенно отличаются в отношении достигаемых характеристик невесомости. В управляемом варианте к перечню факторов, мешающих создавать возможный уровень невесомости, т. е. воздействующих на нее, добавляется ряд новых возмущающих факторов, вносимых космонавтами. Какие же космические факторы общего характера воздействуют на невесомость и какова степень этих воздействий в обеих системах? Это остаточный уровень гравитации , аэродинамические силы , маневрирование на орбите . В пилотируемых системах к этим факторам добавляются консольные операции, дыхание , движение внутри корабля.

В пилотируемом варианте биотехнологическим процессом легче управлять, а вся система в целом может быть не столь автоматизирована. Автоматические системы дешевле (затраты 5 тыс. долл. на 1 кг) пилотируемых (10 тыс. долл./кг), но требуют более продолжительных предварительных испытаний устройств, которые будут работать в космосе. Система многократного пользования “LIFESAT”, выводимая на орбиту системой “Шатл”, которая, как ожидается, будет использоваться 2 или более раза в год, начиная с 1992 г., обеспечивай невесомость ~10″5 и способна к повторным использованиям каждые 2 месяца. Ниже мы рассмотрим некоторые примеры космических биотехнологий.

Первые работы в области космической биотехнологии возникли в начале 70-х годов с отработки методов электрофоретического разделения биоматериалов. В последующем они все больше расширялись за счет других видов работ - кристаллизации белков клеточных культур и др. Считается, что примерно 4% рынка биотехнологических продуктов может быть обеспечено космосом, а к концу столетия размер этой продукции по одним оценкам составит 2 млрд., по другим - около 15 млрд. долл. из общего объема биотехнологического производства около 350 млрд. долл.

Апр
24

Методы в космосе.

Два вида разделения биоматериалов испытывается в космических условиях: электрофорез и термодинамическое фазовое разделение. Как уже говорилось выше, в земных условиях в результате конвекции разделяемые вещества вновь перемешиваются. Конвекции возникают из-за того, что выделяемое электричеством тепло создает различия в жидкости, которые в условиях гравитации порождают конвекции. В условиях невесомости перемещение тепла минимизировано, что позволяет повысить напряжение электрического поля и тем самым - скорость процесса электрофоретического разделения.

За рубежом первые электрофоретические системы были использованы на борту “Аполлон-14″ в 1971 г., затем “Аполлон-16″ и “Союз-Аполлон”. Эффективность процесса разделения в невесомости была в сотни раз выше, чем в земных условиях, а качество разделения было лучше примерно в 4 раза. С помощью электрофореза в космических условиях был получен ценный медицинский препарат эритропоэтин - гормон, стимулирующий образование красных кровяных телец. Электрофоретическое разделение белков, в частности интерферона, проводится и на советских спутниках.

Очень хороший метод разделения биологических материалов основан на использовании несмешиваемых жидкостей (двухфазных систем), стремящихся обособиться по термодинамическому закону, по которому система должна минимизировать свободную энергию. В земных условиях этот метод крайне мало эффективен из-за того, что конвекция и седиментация смешивают разделяемые вещества с большей эффективностью, чем система их разделяет. В условиях невесомости метод показывает очень хорошие результаты. В настоящее время этот подход совершенствуется путем сочетания с электрическим полем.

Фев
19

Космическая биотехнология.

Зарождающаяся на наших глазах космическая биотехнология свидетельствует о том, что биотехнология проникает во все сферы производства. Как и другие виды инженерно-технологических работ, биотехнология делает первые шаги в космос, осваивая специфические неземные условия. С самых первых шагов было очевидно, что космос создает для биотехнологических процессов не только большие трудности, но и большие преимущества. Они обусловлены главным образом невесомостью, существенно изменяющей течение физико-химических процессов, на которых основаны многие биотехнологии. Это, прежде всего, относится к производственным процессам электрофоретического или хроматографического разделения белков и других биоматериалов. Невесомость создает следующие условия, важные для этих процессов. 1. Редуцирует конвекции (перенос тепла), вызванные плавучестью, и исключает седиментацию (осаждение под воздействием гравитационных сил). 2. Делает силы поверхностного натяжения больше гравитационных. 3. Обеспечивает протекание процессов без емкостей. В земных условиях температурные различия между жидкостями после их смешения, быстро выравниваются в результате конвекционных перемещений, вызванных плотностными различиями теплых и холодных частей жидкости. В условиях невесомости этого не происходит, что крайне важно для процессов разделения - сохраняется гетерогенность фаз и содержимого жидкостей, что качественно улучшает разрешающую способность методов разделения, повышает выход и чистоту получаемых продуктов.

Другая из упомянутых выше особенностей космических условий состоит в том, что жидкости из-за повышенной (в сравнении с земными условиями) величины поверхностного натяжения и понижения сил гравитации обретают сферические формы, не нуждающиеся в сосудах, емкостях, минимизируется энтропия жидкостей. Это создает благоприятные условия для процессов кристаллизации белков - важного для многих биотехнологий процесса получения высококачественных белковых продуктов и для рентгеноструктурных анализов белков. Почти полное отсутствие гравитации приводит к свободной флотации составных частей в свободной жидкости в отсутствии стенок сосудов, контейнеров, что также важно для технологии разделения. Ведь исключаются возмущающие нормальное течение процесса пристеночные явления, меняющие физико-механические свойства жидкости и “оказывающие воздействие на поведение находящихся в них компонентов. К тому же и сами стойки, какими бы они ни были нейтральными к источниками загрязнений и дополнительных электрических, химических сил, могут избирательно сорбировать вещества.

Для технологии важно наличие всех перечисленных условии. Не обязателен полет в космос, ибо невесомость может быть создана и искусственно. Существует ряд технических способов создания невесомости вне космоса которые на нынешнем этапе научно-технических достижений различаются между собой по продолжительности времени создаваемой невесомости и стоимости. На сегодняшний день для создания продолжительной невесомости лучше всего, естественно, орбитальные средства - пилотируемые и автоматические. К первым относятся космический “Шатл STS” США и советская космическая станция “Мир”. К автоматическим относятся многократно используемые спутники “EURECA” (США) и европейская космическая платформа “LIFESAT”.