Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Май
10

Растительные клетки - объекты биотехнологии.

Новый этап развития биотехнологии связан в первую очередь с использованием растительных клеток. Уже сейчас из растений получают около 25% фармацевтических препаратов. Они - сырье для тонкой химии, а также источник биохимических компонентов для косметических изделий и пищевых добавок. Биотехнология стремится повысить выход ценных продуктов растений, если нужно, специалисты изменяют их свойства, а также прививают им способность производить новые, не свойственные для них виды продуктов.

Благодаря новейшим открытиям молекулярной биологии и генетики и достижениям генной инженерии растения стали быстро вовлекать в сферу биотехнологии. Этому способствует ряд особенностей жизнедеятельности и размножения растений - способность к неограниченному вегетативному размножению, т. е. к регенерации полноценного растения из черенка, а в условиях биотехнологических систем - из небольшой группы клеток и даже из одной клетки. При культивировании в питательных средах растительные клетки способны в одних условиях неограниченно размножаться, быстро наращивать биомассу, в других - дифференцироваться, образовывать корешки, стебельки, листочки (формируя в пробирке миниатюрное растеньице), а затем переходить к цветению и плодоношению. Таким образом, весь свой биологический цикл растения могут осуществлять в контролируемых условиях биотехнологических систем. Оказывая на развивающиеся в этих условиях растения физические, химические и иные воздействия, можно направленно улучшать культивируемые сорта, повышать их продуктивность, использовать растительные клетки в качестве продуцентов биологически активных веществ.

Благодаря биотехнологии традиционные методы гибридизации растений (приведшие к “зеленой революции”, т. е. кардинальному повышению урожайности) расширились и стали проводиться на клеточном уровне. С помощью новых методов клеточной инженерии теперь сливают друг с другом клетки разных растений и получают из них новые гибридные растения. Новые методы чрезвычайно расширили границы спектра скрещиваемых растений, куда вошли не скрещивающиеся в природе виды. Однако техническая возможность соединения клеток очень отдаленных видов растений не всегда означает преодоление их биологической несовместимости, поэтому не все гибриды могут сохраняться.

Май
08

Топливом будущего считают водород.

Химический и электрохимический способы получения водорода неэкономичны. Поэтому специалисты обратили внимание на микроорганизмы, способные выделять водород. Еще в начале 60-х годов установили, что хлоропласты шпината в присутствии бактериального экстракта, содержащего фермент гидрогеназу, продуцируют водород. Это способны делать хемотрофные бактерии, цианобактерии, некоторые водоросли и простейшие. Сейчас предложено несколько вариантов биотехнологических систем для производства водорода, однако пока ни одна из них неприемлема для практических целей.

Не одно поколение ученых бьется над проблемой повышения эффективности фотосинтеза у микроорганизмов и растений. Задача эта еще далека от решения. Однако в результате исследований в области биологии фотосинтеза (в частности, выделения и характеристики различных мутантов фотосинтезирующих микроорганизмов) работы вышли на уровень, когда они могут стать основой для решения прикладных задач. Так, некоторые фотосинтезирующие микроорганизмы способны продуцировать аммоний за счет биоконверсии солнечной энергии. Поскольку гербициды подавляют фотосинтез, получение мутантов, не чувствительных к гербицидам - путь к созданию гербицидустойчивых сортов растений. Предполагается, что фотосинтезирующие бактерии будут участвовать в очистке промышленных газов, биодеградации токсических веществ и отходов производства.

Биотехнологической биоэнергетике предстоит ответить на вопросы, связанные с созданием биотопливных элементов, способных превращать химическую энергию субстратов в другие виды энергии, главным образом в электрическую. Такие элементы используют в настоящее время при создании биологических датчиков-биосенсоров.

Май
01

Новые сорта.

В результате этой сложной, но успешно проведенной работы был получен новый сорт помидоров с улучшенными свойствами, а именно - способностью более продолжительное время не размягчаться при хранении. Заметим, что на получение нового сорта традиционными методами требуется 10 и более лет, в этом случае сорт был получен всего за один сезон. Понятно, почему зарубежные фирмы (например, “Монсанта”) финансируют многомиллиардные научные исследования в области генной инженерии. В этой фирме разрабатывают методы переноса из бактерий в растения генов, кодирующих токсины, убивающие насекомых.

Токсический белок, продуцируемый микробом Bacillus Ihmingiensis, убивает личинок насекомых питающихся листьями. Этот токсин выделен в кристаллическом виде. Один из способов его использования - распыление на поверхность растения. Однако более экономичен и удобен перенос гена токсина в растения. В 1987 г. ген токсина, изолированный из бактерий успешно перенесли в геном табака. Его экспрессия привела к тому, что личинки насекомого Manduca secta погибал при скармливании листьев трансгенного растения

Аналогичные работы проводят с хлопчатником для придания ему устойчивости к гусеницам. Получены растения, содержащие тот же ген токсина. Кроме того, создан инсектицидоустойчивый трансгенный хлопчатник. В геном обычного хлопчатника введен ген ингибитора трипсина коровьего гороха, продукт которого подавляет активность протеаз в пищеварительной системе насекомых. Известны многие токсины, продуцируемые микроорганизмами и эффективно убивающие разные виды насекомых. Сейчас исследуют гены этих токсинов с целью создания, например, трансгенного картофеля, устойчивого к колорадскому жуку.