Июнь
20

СПИД.

Еще 10 лет назад слово СПИД отсутствовало в нашем лексиконе, а сейчас это заболевание встало В один ряд с другими реальными угрозами (ядерным оружием, экологией) глобального уничтожения человечества СПИД сигнализирует нам о том, что в преддверии XXI ” человечество, вооруженное до зубов достижениями научно-технического прогресса, не должно считать что страшные эпидемии, которые косили миллионы, остались позади. СПИД - это предостережение от чрезмерной амбициозности человека, считающего, что он многого достиг в сфере здравоохранения. Огромная опасность СПИДа состоит в том, что он - оружие природы над которым человек не властен в такой мере, как над ядерным и известными видами биологического и химического оружия. СПИД опасен еще и тем, что пульт управления этим оружием находится во власти не какой-то отдельной группы профессионалов военных и политиков а широких и, нередко, темных масс населения планеты. И поэтому неимоверно трудно заставить всех осознать опасность и остановить распространение СПИДа, ибо искоренить эту болезнь из популяции людей в ближайшие, по крайней мере, 10 - 20 лет будет невозможно. Носитель СПИДа уже прочно внедрился в хромосомы 10 млн. людей.

Коварство СПИДа заключается в том, что его возбудитель поражает не отдельные органы или системы органов человека - сердце, печень, легкие и т. д., а святая святых его “жизнеустойчивости” - защитные (иммунные) механизмы, призванные вырабатывать антитела против всех патогенов. В результате организм становится полностью безоружным против любой инфекции, смертельно опасной становится обыкновенная простуда. СПИД - это болезнь болезней, запрятанная в глубинах организма, и человек, пораженный им, может многие годы не подозревать о своей обреченности. СПИД - это болезнь конца XX в., о ней и его возбудителе медицина и биология узнали лишь в самое последнее время.

В 1983 г. Люк Монтанье и его коллеги в Институте им. Пастера (Париж) и параллельно Роберт Галло со своими коллегами в Национальном институте рака в США выделили и описали возбудитель СПИДа вирус иммунодефицита человека (ВИЧ), который относится к ретревирусам. Вскоре были разработаны диагностические тесты позволяющие быстро обнаруживать вирус в крови человека. Началось широкое обследование населения, прежде всего в “группе риска” - среди гомосексуалистов, проституток, наркоманов, а также у доноров крови и в имеющихся запасах крови. При этом выяснилось, что вирусоносителей значительно больше, чем больных.

Июнь
10

Клетки животных - продуценты биологически активных веществ.

В настоящее время клонировано много генов, кодирующих важные для науки и практики белки. После переноса таких генов в клетки животных можно получать клетки - продуценты биологически активных белков. Белки, синтезируемые клетками животных, всегда полноценны, поскольку они правильно формируются и претерпевают все необходимые модификации (гликозилирование, карбоксилирование, гидроксилирование).

В наши дни в промышленных масштабах в биореакторах с помощью клеток животных налажено производство большого числа биологически активных белков которые используют как медицинские препараты. Наибольший интерес представляют эритропоэтин, активатора плазминогена, фактор свертывания крови антитрипсин, поверхностный белок вируса гепатита в интерлейкины, различные моноклональные антитела, антигены вируса СПИД.

Коротко о важнейших из них. Эритропоэтин гормон стимулирующий образование красных кровяных телец. Его используют при анемиях, обусловленных почечной недостаточностью (эритропоэтин синтезируется в почках). Факторы свертываемости крови VIII и IX используют яри лечении наследственной гемофилии для остановки кровотечений, активатор плазминогена, напротив, для предотвращения образования тромбов. Гормон роста - препарат для лечения карликовости, инсулин - для лечения диабета, гонадотропные гормоны (фолликулостимулирующий, лютеинизирующий, хорионический) - для нормализации или стимуляции функций яичника, антитрипсин - для лечения эмфиземы.

Быстро расширяется сфера биотехнологии, основанная на иммунологии, - иммунобиотехнология. Сюда относится индустрия диагностических тест-систем (диагностикумов) для широкого обследования распространенности инфекций, изготовление вакцин и, конечно, получение поликлональных и моноклональных антител. Все наслышаны о таких белках, как лимфокины, к которым относятся интерфероны, интерлейкины, фактор, стимулирующий колониеобразованне гранулоцитов и макрофагов, фактор некроза опухолей и некоторые другие. Эти белки секретируются клетками иммунной системы в ответ на появление внешнего антигена. Их используют в качестве противовирусных и противоопухолевых препаратов (возможность лечения ими злокачественных новообразований пока проблематична). Производство некоторых лимфокинов отлажено и в бактериальной системе, о чем мы уже говорили, но иногда клетки животных более приемлемы для этой цели, особенно для тех белков, которые содержат углеводный центр. Несколько подробнее остановимся на производстве антител. С давних пор для их получения используются животные - кролики, козы, бараны. На появление в крови чужеродного белка-антигена иммунная система реагирует активацией размножения В-лимфоцитов, в которых начинается синтез антител. На поверхности антигена обычно содержится несколько “активных” участков (антигенных детерминант), каждый из которых побуждает образование антител против себя. При этом к каждая В-клетка и ее потомки специализируются на синтезе одного сорта антител. В результате образуется столько разных видов антителообразующих В-клеток, сколько в антигене имеется детерминант. Получаемая при этом из крови антисыворотка содержит смесь антител к разным детерминантам. Такие антитела называют полиспецифическими, чаще - поликлональными.

Апр
26

Интерфероны.

Это белки-биостимуляторы, активаторы иммунной системы клеток. Кроме того, они обладают антивирусной активностью и препятствуя размножению раковых клеток. Существуют 3 класса интерферонов человека: а, р и у. Уже в конце 70-х гидов были получены первые гибридные ДНК, способные функционировать в бактериальных клетках с образованием р-интерферона человека. Затем аналогичные конструкции были созданы для а- и у интерферонов.

В результате переноса в клетки Е. соi рекомбинантных (гибридных) ДНК с регуляторными элементами бактериального триптофанового или лактозного оперона и интерфероновыми генами получили соответствующие штаммы-продуценты. Для повышения их продуктивности, а также усиления антивирусной активности интерферонов в дальнейшем было проведено несколько дополнительных модификаций рекомбинантной ДНК (в частности, проведена замена некоторых аминокислот), подобраны генотипы клеток-хозяев и условия их культивирования.

Бактериальные штаммы-продуценты всех трех типов интерферонов были получены и в СССР: для а- и у интерферонов - и Институте биоорганической химии АН СССР, а для р-интерферона - во ВНИИГенетики и селекции промышленных микроорганизмов. Кроме Е. coli, для производства интерферонов используют также грамотрицательные бактерии Metfrylomonas, Salmonella, Pseudomonas и др. В частности, на основе штамма Pseudomonas sp. налажено промышленное получение человеческого р-интерферона в СССР. Созданы и дрожжевые продуценты интерферонов, которые имеют некоторые преимущества перед бактериальными: дрожжи используют более дешевые субстраты, не подвержены литическому действию фагов (что постоянно угрожает бактериальным продуцентам) или аутолизису, легко сепарируются, осуществляют правильный процессинг (формирование) преинтерферонов и др.

Апр
26

Использование невесомости.

Пилотируемые и автоматические системы существенно отличаются в отношении достигаемых характеристик невесомости. В управляемом варианте к перечню факторов, мешающих создавать возможный уровень невесомости, т. е. воздействующих на нее, добавляется ряд новых возмущающих факторов, вносимых космонавтами. Какие же космические факторы общего характера воздействуют на невесомость и какова степень этих воздействий в обеих системах? Это остаточный уровень гравитации , аэродинамические силы , маневрирование на орбите . В пилотируемых системах к этим факторам добавляются консольные операции, дыхание , движение внутри корабля.

В пилотируемом варианте биотехнологическим процессом легче управлять, а вся система в целом может быть не столь автоматизирована. Автоматические системы дешевле (затраты 5 тыс. долл. на 1 кг) пилотируемых (10 тыс. долл./кг), но требуют более продолжительных предварительных испытаний устройств, которые будут работать в космосе. Система многократного пользования “LIFESAT”, выводимая на орбиту системой “Шатл”, которая, как ожидается, будет использоваться 2 или более раза в год, начиная с 1992 г., обеспечивай невесомость ~10″5 и способна к повторным использованиям каждые 2 месяца. Ниже мы рассмотрим некоторые примеры космических биотехнологий.

Первые работы в области космической биотехнологии возникли в начале 70-х годов с отработки методов электрофоретического разделения биоматериалов. В последующем они все больше расширялись за счет других видов работ - кристаллизации белков клеточных культур и др. Считается, что примерно 4% рынка биотехнологических продуктов может быть обеспечено космосом, а к концу столетия размер этой продукции по одним оценкам составит 2 млрд., по другим - около 15 млрд. долл. из общего объема биотехнологического производства около 350 млрд. долл.