Фев
23

Антинела.

Традиционным способом невозможно получить моноспецифические, или, как говорят, моноклинальные антитела (сокращенно МАТ). Для этого необходимо разделить либо смесь антител, либо В-клетки на отдельные виды. Эта задача была решена в 1975 г. немецкими специалистами Даном Келлером и Досоном Мелстейном, которые разработали метод создания гибридом. Метод основан на слиянии клеток опухоли с В-лимфоцитами и получении клеточных гибридов или гибридом. Опухолевые клетки придают лимфоцитам способность к неограниченному размножению вне организма с сохранением их способности продуцировать и секретировать в культуральную среду антитела. В условиях культивирования гибридом вне организма можно из каждой гибридной клетки получить обособленный клон, производящий антитела одной специфичности - МАТ.

В последнее время разработана процедура получения неспецифических МАТ, основанная на слиянии двух разных гибридов. Гибридная гибридома (фузома) обеспечивает образование одного иммуноглобулина с антигенсвязывающей способностью, характерной для обоих партнеров. Сейчас гибридомы и фузомы широко используют для производства гомогенных антител, специфичных для почти любого антигена.

Новое направление в иммунобиотехнологии - создание искусственных антител, обладателей необычных свойств. Ген тяжелой цепи иммуноглобулина (молекулы антитела) выделяли гибридомы, которая продуцировала иммуноглобулин против химического агента 4-гидрокси-З-нитрофенацетн-ла (ГНФ). У этого гена вариабельная (изменчивая) область (V) соответствует антигену. Затем в константную область (С) гена иммуноглобулина вставляли ген фермента ДНКазы из Staphylococcus aureus. Образующийся рекомбинантный (гибридный) ген кодировал рекомбинантный белок, состоящий из изменяющейся области и части константной области иммуноглобулина, а также ДНКазы. При функционировании этого гена в клетках, продуцирующих легкую цепь иммуноглобулина, происходила самосборка и образовывался рекомбинантный (гибридный) иммуноглобулин, состоящий из легкой и тяжелой цепей (антитело). Это антитело было специфично по отношению к ГНФ и в то же время обладало ДНКазной активностью. Таким образом, можно осуществлять разнообразные комбинации компонентов антител, получать новые их формы, отсутствующие в природе.

Широкое применение МАТ нашли в сфере науки и в медицине для диагностики и лечения заболевании, вызываемых патогенами, прежде всего микроорганизмами и их токсинами. С помощью биосенсоров (см. выше), сконструированных на основе МАТ, диагностируют беременность, выявляют предрасположенность к диабету, ревматоидному артриту, диагностируют наследственные заболевания. Используют МАТ также для диагностики и лечения рака, СПИДа и т. д.

Рынок сбыта биотехнологических продуктов, предназначенных для иммунотерапии, непрерывно растет: в США в 1987 г. его объем равнялся 1,5 млрд. долл., а к 1993 г. ожидается, что он составит 8,6 млрд. долл. Вне медицины мат. широко используют в биологических датчиках (биосенсорах), применяемых для тестирования качества пищевой продукции, для диагностики болезней животных и растений.

Еще одно новое направление в иммунобиотехнологии - получение каталитических антител, абизимов, соединяющих в себе каталитический центр фермента и связывающий центр антитела. Некоторые абизимы уже начинают производиться промышленностью. В качестве примера такого абизима можно привести МАТ к фосфонамидату, которые способны катализировать гидролиз карбоксамида.

Еще нет комментариев.

RSS feed for comments of this post.
TrackBack URI

Оставить комментарий