Май
24

Прикладная энзимология.

Ожидается, что прикладная энзимология затронет также область промышленной модификации сахаров и спиртов, эстерификацию олигосахаридов и рибофлавина (витамина В2) и др. Для повышения выхода конечного продукта, упрощения ферментативных процессов и повышения их производственной эффективности в нынешние технологии получения и использования ферментов внедряют генно-инженерные методы. Хороший пример - сыроварение, в котором одновременно используют молочнокислые бактерии и фермент химозин из желудка телят. Клонированный ген прохимозина коровы был перенесен в молочнокислые бактерии Lactococcus и Leuconosloc. Трансформированные молочнокислые бактерии приобрели способность продуцировать химозин что упростило технологию производства сыра. Генно-инженерный (рекомбинатный) пепсиноген, предшественник желудочного фермента пепсина свиньи, получают в клетках Bacillus brevis, трансформированных плазмидой, содержащей ген пепсиногена.

Для повышения термостабильности ферментов в последние годы с помощью генно-инженерных подходов клонируют соответствующие гены из термофильных бактерий и переносят их в клетки продуцентов. Так, для получения из крахмала высокоочищенной глюкозы используют термостабильную а-амилазу Bacillus, продуцируемую Е. coli.

Биотехнологические процессы, состоящие из нескольких ферментативных актов, удается упростить благодаря включению в хромосому одной бактерии всех генов, кодирующих эти ферменты. Таким способом уже удалось в одном ферментационном чане превращать крахмал в фруктозную патоку, ранее для этого процесса требовалось 3 разных фермента - А-амилаза, глюкоамилаза и глюкоизомераза. Для модификации активных центров ферментов и усиления их каталитической активности специалисты возлагают большие надежды на разрабатываемые методы белковой инженерии.

Апр
26

Управление живыми клетками.

Первоначально во многих случаях ферменты использовали в биотехнологическом производстве только в составе живых клеток, которыми нужно уметь управлять так, чтобы мобилизовать содержащиеся в них ферменты на нужные для производства биопроцессы. Сделать это удается не всегда, поэтому биотехнология, основанная на использовании ферментов в составе клеток (и организмов), имеет пределы на пути повышения эффективности. Идеальной была бы система, в которой можно использовать каталитические свойства очищенных ферментов, создав нужные для каждого производства технологические цепочки. В постепенном вытеснении живых (полуоткрытых) систем, каковыми являются клетки и организмы, биохимическими, т. е. полностью открытыми системами, состоящими из изолированных клеточных структур, и заключается тенденция прогресса в биотехнологии. Однако на каждом этапе развития именно уровень научных и методических достижений определяет возможность отказа от клеток и перехода к открытой системе.

Важнейшее достоинство клеток - это хорошо налаженное автоматическое восполнение изнашивающихся структур и постоянное поддержание их в рабочем состоянии. Этого пока не удалось добиться в открытых системах, они неустойчивы и дороги. Поэтому на данном этапе биотехнология выделения и использования ферментов распространяется пока на те случаи, когда ферменты участвуют в производственных процессах, осуществляются относительно простые химические реакции в производственных масштабах - расщепление (гидролиз), сбраживание, обработка и т. д. Ферментам присущи свойства, которые делают возможным их промышленное применение как катализаторов органических синтезов. Они обладают высокой каталитической активностью и в отличие от неорганических катализаторов высокоспецифичны, работают при умеренных рН и температурах (до 50 - 60°С). Неорганические же катализаторы требуют жестких кислотных и температурных условий, разрушительно действующих как на субстрат, так и на продукт реакции.

Активность ферментов поддается регулированию в широких пределах направленным изменением условий среды, ее кислотности, добавками веществ”, активирующих или подавляющих фермент. Главный недостаток ферментов - “ранимость”, повреждаемость. Правда, достигнуты значительные успехи в изменении свойств ферментов - повышена их устойчивость. Удалось существенно расширить сферу потенциального применения ферментов - они теперь “работают” в ангидридных органических растворителях и суперкритических жидкостях.

Апр
25

Создание новых форм.

Перенос генов в растения может быть с успехом использован и для создания новых интересных форм в цветоводстве. С помощью генно-инженерных подходов получена, например, трансгенная петуния с белыми цветами. Достигнуто это путем переноса гена хальконсинтетазы в антисмысловой ориентации. В результате синтеза анти-мРНК нарушалось образование флавиноидов, ключевую роль в котором играет фермент хальконсинтетаза.

Большое внимание в биотехнологических работах уделяют сое, плоды которой содержат много белка (40%) и масла (20%). Некоторым исследовательским группам удалось регенерировать из трансформированных отдельными генами клеток сои, растущих в культуре, целые растения с измененными генетическими свойствами. Они устойчивее к гербицидам, вирусам и насекомым, содержат больше богатых метионином запасных белков. Работы с соей продолжаются с целью получения новых сортов, устойчивых к вирусам и с измененным составом масла. Желание исследователей улучшить свойства такого ценного продукта, как масло, вполне понятно. Ведь мировая продукция растительного масла в настоящее время достигает 60 млн. т, а общая стоимость производимого масла составляет 20 млрд. долл.

Мы уже говорили об ассоциациях растений с микробами. Генная инженерия стремится изменить генетические свойства не только растений, но и ассоциированных с ними микроорганизмов. Известно, что растения получают из почвы лишь незначительную часть содержащегося в ней азота. Некоторых из них снабжают азотом симбиотические бактерии, которые живут в анаэробных условиях в клубеньках, образуемых на корневых волосках. За связывание атмосферного азота у азотфиксирующих клубеньковых бактерий Rhizobium ответственны гены nif. Перенос nif-генов в генетический аппарат растений решил бы важнейшую агробиотехнологическую задачу. Однако сейчас пока удалось реализовать несколько иной подход, который позволяет усилить азотфиксирующие свойства симбионта донника (Rhizobium meliloti) путем увеличения в нем числа nil-генов.

Разработаны подходы для получения морозоустойчивых растений, основанные на генно-инженерных манипуляциях с Pseudomonas syringae, сосуществующей с некоторыми растениями и содержащей белок, который ускоряет кристаллизацию льда. Когда из бактерии удаляют ген для этого белка, полученный штамм называют “лед-минус”. Штамм “лед-минус”, распыленным над клубнями картофеля, конкурирует с обычными бактериями, что в конечном счете приводит к повышению морозоустойчивости растений.

Апр
12

Примеры биотехнологических подходов.

Ниже мы приводим некоторые, на наш взгляд наиболее интересные примеры, иллюстрирующие возможности современных биотехнологических подходов основанных на генной инженерии. Как уже говорилось, один из методических приемов переноса генов состоит в пользовании патогенной бактерии Agrobacterium tumefaciens, которая содержит Ti-плазмиду, ответственную за индукцию (побуждение) опухолей у двудольных растений. Технология введения чужеродных генов в эту плазмиду и последующее заражение растений агробактерией с измененной Ti-плазмидой на сегодняшний день наиболее хорошо отработана.

Растения - источник пищи и в принципе обеспечивают потребности человека и животных набором тех соединений, которые клетки животных и человека не синтезируют сами. К таким соединениям относятся и так называемые незаменимые аминокислоты, и многие витамины. Вместе с тем основные виды используемых в пищу растений неполноценны, т. е. дефицитны (для животных) по некоторым аминокислотам. В такие растительные корма необходимо добавлять некоторые аминокислоты - лизин, треонин, триптофан. Бобовые дефицитны по метионину и цистеину.

Для сбалансирования растительных кормов налажено специальное крупномасштабное микробиологическое промышленное производство этих аминокислот. Однако решение проблемы нельзя считать окончательным. Считается, что генная инженерия может кардинально упростить решение этой задачи. В настоящее время уже выделены гены запасаемых белков картофеля (пататин), фасоли (фазеолин), гороха (легуин), кукурузы (зеин), которые составляют основу кормов. Многие из этих генов удалось перенести в растения.

Что специалисты ожидают получить от этих манипуляции? Изменить эти гены таким образом, чтобы в кодируемых ими запасных белках увеличилось содержание дефицитных аминокислот. Есть, правда, опасение, что такая модификация структуры белков будет препятствовать их нормальному “складированию” в семенах. Кроме того, эти белки во многих случаях выполняют определенные функции в клетках, которые после модификации могут блокироваться. Другая идея - использовать искусственно (химически) синтезированные гены, кодирующие в большом количестве незаменимые аминокислоты. Такие эксперименты уже проводят о картофелем для повышения в нем содержания ценных аминокислот.