Май
25

Создание микроорганизмов-продуцентов.

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, производство которых необходимо. Для биотехнологии нужны высокопродуктивные штаммы микроорганизмов. Их создают методами селекции - направленного отбора спонтанных или индуцированных (химическими мутагенами или радиацией) мутантов. Получение таких штаммов занимаются иногда многие годы. В результате селекции производительность продуцентов удается увеличить в сотни или тысячи раз. Например, в работе с Penicillium методами селекции выход пенициллина был увеличен в конце концов, примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Отбору высокопроизводительных штаммов предшествуют тонкие манипуляции селекционера с генетическим материалом исходных штаммов. При этом используют весь спектр естественных способов рекомбинирования генов, известных у бактерий: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) была успешно использована при создании штамма Pseudomonas putida, способного утилизовать углеводороды нефти. Очень часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериальных вирусов - бактериофагов) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся не в основной хромосоме, а в плазмидах. Путем амплификации удается увеличить число этих плазмид в клетках и существенно повысить производство антибиотиков.

Еще один подход в генетико-селекционной работе - получение генетических рекомбинантов путем слияния разных штаммов бактерий, лишенных стенок (протопластов). Так, слиянием протопластов двух штаммов Streptomyces был сконструирован новый высокоэффективный штамм-продуцент рифампицина С: мутанты Nocardia mediterranei, в которых не синтезировался рифампицин, после слияния сформировали штаммы, продуцирующие три новых рифампицина. Слияние протопластов позволяет объединять генетические материалы и таких микроорганизмов, которые в естественных условиях не скрещиваются.

Май
09

Иммобилизация ферментов.

Все шире применяют в производстве иммобилизацию ферментов на носителях. Это позволяет увеличивать их стабильность, получать более чистые продукты реакции, облегчать восстановление и повторное использование биокатализаторов, например, при создании биосенсоров, о которых пойдет речь дальше. Одно из достижений биотехнологии - выделение ферментов из термофильных бактерий. Они термостабильны, что ценится промышленным производством. В частности, в органическом синтезе широко применяют никель-содержащую гидрогеназу из Methanobacterium thermoautotrop. Надо сказать, что большинство ферментов примышленного пользования получают из микроорганизмов и грибов. Только редкие ферменты растительного и животного происхождения (например, папаин, получаемый из плодов папайи) находят промышленное применение.

Ферменты из микроорганизмов все чаще заменяют используемые в некоторых отраслях промышленности аналогичные растительные и животные ферменты. Так, в пивоварении и хлебопечении амилазы Bacillus и Aspergillus сейчас заменили амилазы из пшеничного солода и ячменя, а протеазы из Aspergillus заменили животные и растительные протеазы, употребляемые для размягчения мяса.

Из 2 тыс. известных сейчас ферментов только около 10% ( - 200) вовлечено в промышленное производства Большой практический интерес представляют, в частности, аминоацилаза, применяемая для разделения смесей изомеров аминокислот, целлюлаза, осуществляющая гидролиз целлюлозы в глюкозу, инвертаза, используемая для получения инвертированного сахара, и др.

Май
08

Топливом будущего считают водород.

Химический и электрохимический способы получения водорода неэкономичны. Поэтому специалисты обратили внимание на микроорганизмы, способные выделять водород. Еще в начале 60-х годов установили, что хлоропласты шпината в присутствии бактериального экстракта, содержащего фермент гидрогеназу, продуцируют водород. Это способны делать хемотрофные бактерии, цианобактерии, некоторые водоросли и простейшие. Сейчас предложено несколько вариантов биотехнологических систем для производства водорода, однако пока ни одна из них неприемлема для практических целей.

Не одно поколение ученых бьется над проблемой повышения эффективности фотосинтеза у микроорганизмов и растений. Задача эта еще далека от решения. Однако в результате исследований в области биологии фотосинтеза (в частности, выделения и характеристики различных мутантов фотосинтезирующих микроорганизмов) работы вышли на уровень, когда они могут стать основой для решения прикладных задач. Так, некоторые фотосинтезирующие микроорганизмы способны продуцировать аммоний за счет биоконверсии солнечной энергии. Поскольку гербициды подавляют фотосинтез, получение мутантов, не чувствительных к гербицидам - путь к созданию гербицидустойчивых сортов растений. Предполагается, что фотосинтезирующие бактерии будут участвовать в очистке промышленных газов, биодеградации токсических веществ и отходов производства.

Биотехнологической биоэнергетике предстоит ответить на вопросы, связанные с созданием биотопливных элементов, способных превращать химическую энергию субстратов в другие виды энергии, главным образом в электрическую. Такие элементы используют в настоящее время при создании биологических датчиков-биосенсоров.

Май
08

Генно-инженерное получение микроорганизмов-продуцентов.

В середине 70-х годов возникла новая экспериментальная технология - генетическая (или генная) инженерия, которая основана на конструировании рекомбинантной ДНК вне клетки (in vitro) и ее размножении в клетках микроорганизмов. В результате использования этой технологии стало возможным выделять индивидуальные гены, модифицировать, соединять друг с другом, получая “слитые гены”, продуцирующие белки с совершенно новыми свойствами (белковая инженерия).

Типичная схема получения и размножения (амплификации) индивидуального фрагмента ДНК (гена) приведена на рис. 2. В качестве векторов, т. е. молекул-носителей, в которых происходит размножение генов, используют плазмиды, бактериофаги и вирусы, способные размножаться в бактериальных клетках. После соединения (лигирования) вектора с фрагментом ДНК, несущим ген, образуется рекомбинантная ДНК. Затем вектор с геном вводят в клетки микроорганизмов (трансформация), где они амплифицируются. В результате получается множество копий одного гена - клон. Поэтому такой способ получения индивидуального гена называют клонированием.

Если для клонирования использовать ДНК человека, содержащую все его гены, они окажутся в разных клонах будет получена генная библиотека (клонотека) человека. Гены животных, человека и растений, клонируемые таким путем в бактериях (как правило, используют Е. coli), не функционируют в них. Для этого их нужно выделить из бактерии, снабдить регулятором бактериального гена и вновь ввести в бактерию. Получены и используются многие штаммы бактерий, в которых функционируют гены разного происхождения, производящие нужные продукты.

Этот арсенал новых, генно-инженерных, штаммов-продуцентов позволил наряду с продуктами природных штаммов (их называют биопродуктами первого поколения) начать производство на базе генно-инженерных штаммов рекомбинантные белки - биопродукцию второго поколения. Биопродукцией третьего поколения будут искусственно синтезированные соединения, полностью имитирующие биологические функции природных белков, но не являющиеся ими.

Генно-инженерные методы (технология рекомбинантных ДНК) все шире используют в биотехнологическом производстве прежде всего ценных для медицины белков, в том числе таких, которые трудно синтезировать химическими методами пли получить в нужных количествах из биологического материала. Это в первую очередь белки и пептиды (белковые молекулы, состоящие из небольшого числа аминокислот), которые синтезируются в организме человека и используются как медикаменты. Усилия генных инженеров направлены на создание бактерий-продуцентов, которые бы с высокой эффективностью производили такие биологически активные продукты. Основные трудности здесь заключаются не столько в конструировании продуцентов, сколько в том, чтобы синтезирующиеся в них чужеродные белки нормально формировались, модифицировались и не разрушались в клетках микроорганизмов.