Май
05

Введение.

Ученые полагают, что дальнейший прогресс человечества не только будет во многом зависеть от развития биотехнологии, но просто не сможет без нее обойтись, ибо иначе не удастся прокормить все растущее население Земли. Рассказывается о том, как на основе методов биотехнологии организуют производство медицинских препаратов, некоторых продуктов питания и кормов для животных.

При раскопках Вавилона была обнаружена дощечка, относящаяся к VI тысячелетию до н. э., на которой описан процесс приготовления пива. Это, вероятно, одно из древнейших письменных упоминаний о целенаправленном применении человеком в практике естественного биологического процесса. С древних времен известно использование и других биотехнологических процессов в различных сферах практической деятельности человека: в виноделии, хлебопечении, сбраживании молочных продуктов и т. д. Однако научный анализ биохимических механизмов, лежащих в основе этих биотехнологических процессов, был проведен лишь в XIX в. Луи Пастером.

Термин “биотехнология” впервые использовал венгр Карл Эреки в 1919 г. для обозначения работ, в которых продукты получают с помощью живых организмов. В Биологическом энциклопедическом словаре, изданном в 1986 г., биотехнологией называют использование живых организмов и биологических процессов в производстве. Европейская федерация биотехнологии (EFB) определяет современную биотехнологию как использование наук о природе (биологии, химии, физики) и инженерных наук (например, электроники) применительно к биосистемам в биоиндустрии, а Европейская комиссия (ЕС) дополняет - для того, чтобы снабдить биологическое сообщество требуемыми продуктами и услугами. Будучи древней сферой производства, биотехнология сегодня представляет собой ультрасовременный этап научно-технического прогресса.

На начальном этапе биотехнология опиралась главным образом на достижения микробиологов и энзимологов, а в последние 10 - 15 лет она получила мощный импульс к развитию со стороны наиболее интенсивно развивающихся областей биологии: вирусологии, молекулярной и клеточной биологии, молекулярной генетики.

Апр
26

Начальный этап развития биотехнологии.

На начальном этапе своего развития биотехнология в основном пользовалась живыми системами в том виде, в каком они существовали в природе. Следующий шаг - использование традиционных методов селекции (искусственного отбора) микроорганизмов, растений и животных, получение более продуктивных штаммов, линий. В последние 10 - 15 лет целенаправленнее улучшение свойств живых систем как объектов биотехнологии резко ускорилось и расширилось после того, как с середины 70-х до середины 80-х гг. были разработаны методы генной инженерии. Сначала это были методы рекомбинирования и конструирования очищенных из клеток генов. На следующем этапе были усовершенствованы методы переноса генов в микроорганизмы, а в конце 70-х годов отработаны подходы к переносу генов в культивируемые клетки животных.

В 1980 - 1982 гг. появились методы переноса генов в целые (многоклеточные) животные организмы и почти одновременно - методы переноса генов в растительные клетки и в целые растения. Микроорганизмы, а также клетки, растущие вне организма, после переноса в них новых генов называют генетически трансформированными клетками. Трансформированными можно называть и многоклеточные организмы - животные, растения, но чаще их обозначают как трансгенные животные и растения. Генетический материал переносят в клетки и организмы с помощью разных методов. В микроорганизмы гены вводят в составе кольцевых молекул.

Особые приемы используют для переноса генов в целые животные организмы. Один из них заключается в том, что очищенные гены впрыскивают в только что оплодотворившиеся яйцеклетки (зиготы) с помощью шприца и микропипетки, кончик которой (с внутренним диаметром ~1 мкм) вводят непосредственно в ядро. Ген можно перенести в эмбрион и с помощью вирусов. Существует 2 подхода переноса генов в растения. Первый состоит в том, что гены вводят в изолированные клетки, лишенные полисахаридных стенок (такие клетки называют протопластами). Затем из этих клеток получают целые растения. При другом подходе используют ДНК (Ti-плазмиду) микроорганизма Agrobacterium tumefaciens, способного заражать растительные клетки и переносить в них часть Ti-плазмиды вместе с любой содержащейся в ней чужой ДНК. Переносимый ген предварительно вводят в эту часть Ti-плазмиды. Напомним, что плазмиды - кольцевые молекулы ДНК, присутствующие в клетках вне хромосом.

Естественно, что в небольшой по объему заметке невозможно рассказать в полной мере обо всех аспектах современной биотехнологии. Поэтому наша цель - ознакомить интересующихся лишь с основными, наиболее перспективными направлениями биотехнологических работ.

Апр
12

Примеры биотехнологических подходов.

Ниже мы приводим некоторые, на наш взгляд наиболее интересные примеры, иллюстрирующие возможности современных биотехнологических подходов основанных на генной инженерии. Как уже говорилось, один из методических приемов переноса генов состоит в пользовании патогенной бактерии Agrobacterium tumefaciens, которая содержит Ti-плазмиду, ответственную за индукцию (побуждение) опухолей у двудольных растений. Технология введения чужеродных генов в эту плазмиду и последующее заражение растений агробактерией с измененной Ti-плазмидой на сегодняшний день наиболее хорошо отработана.

Растения - источник пищи и в принципе обеспечивают потребности человека и животных набором тех соединений, которые клетки животных и человека не синтезируют сами. К таким соединениям относятся и так называемые незаменимые аминокислоты, и многие витамины. Вместе с тем основные виды используемых в пищу растений неполноценны, т. е. дефицитны (для животных) по некоторым аминокислотам. В такие растительные корма необходимо добавлять некоторые аминокислоты - лизин, треонин, триптофан. Бобовые дефицитны по метионину и цистеину.

Для сбалансирования растительных кормов налажено специальное крупномасштабное микробиологическое промышленное производство этих аминокислот. Однако решение проблемы нельзя считать окончательным. Считается, что генная инженерия может кардинально упростить решение этой задачи. В настоящее время уже выделены гены запасаемых белков картофеля (пататин), фасоли (фазеолин), гороха (легуин), кукурузы (зеин), которые составляют основу кормов. Многие из этих генов удалось перенести в растения.

Что специалисты ожидают получить от этих манипуляции? Изменить эти гены таким образом, чтобы в кодируемых ими запасных белках увеличилось содержание дефицитных аминокислот. Есть, правда, опасение, что такая модификация структуры белков будет препятствовать их нормальному “складированию” в семенах. Кроме того, эти белки во многих случаях выполняют определенные функции в клетках, которые после модификации могут блокироваться. Другая идея - использовать искусственно (химически) синтезированные гены, кодирующие в большом количестве незаменимые аминокислоты. Такие эксперименты уже проводят о картофелем для повышения в нем содержания ценных аминокислот.

Март
26

Производство пищевых белков и аминокислот.

Уже давно микроорганизмы используют как источник белка для питания человека и животных. Еще в годы первой мировой войны один из основоположников молекулярной биологии Макс Дельбрюк с коллегами в Германии (в 1937 г. переехал в США) разработали первый технологический процесс промышленного культивирования пивных дрожжей для их добавления в супы и колбасы. Белки, продуцируемые бактериями или дрожжами и используемые в пищевых целях, получили название белки одноклеточных организмов (БОО).

На первом этапе в качестве сырья для микроорганизмов использовали в основном углеводороды нефти. Затем интерес был проявлен к другим субстратам, прежде всего к природным газам (метан). Как субстраты для получения БОО из дрожжей используют некоторые промышленные отходы (например, отработанный сульфитный щелок с бумажных комбинатов, молочную сыворотку - побочный продукт сыроварения, мелассу (патока), отходы спиртоводочных заводов). Промышленный продукт получают в виде суммарной биомассы. Разработаны промышленные линии для производства и переработки микроводорослей с целью получения БОО. Объем дрожжевой биомассы, полученной в мире в 1985 г., превысил 1 млн. т. Ожидается, что в 1990 г. этот объем возрастет более чем в 2 раза.

Производство БОО имеет многие преимущества перед производством белка в животноводстве и растениеводстве: 500 кг дрожжей дают за сутки 80 кг белков, а у быка того же веса суточный привес составляет в лучшем случае 500 г белка. Однако БОО используют в основном как корм для скота, и лишь в будущем можно ожидать создания технологий получения БОО, пригодных для питания человека. Перспективно в этом отношении культивирование некоторых грибов (Fusarium), зеленых водорослей (Chlorella), цианобактерий (Spirulina), имеющих адекватные для человека органолептические свойства. В настоящее время уже налажено производство на базе крахмала волокнистой массы Fusarium как источника пищи для человека.

Изменения в генах, осуществленные с помощью генной инженерии, могут модифицировать структуру и улучшать свойства пищевых белков. Наибольший интерес в плане таких манипуляций привлекают к себе 3 белка животных и растений: овальбумин курицы, составляющий большую часть (54%) белка яйца, казеины (главная фракция в молоке) и белки сои (42% в бобах). Например, манипуляции с кодирующей частью гена k-казеина, в результате которых из белка элиминировался фрагмент, расположенный между 9-й и 17-й аминокислотами, а также” цистеин, участвующий в образовании дисульфидной связи, привели к тому, что новый белок как пищевой продукт стал более качественным.