Июнь
01

Объекты и методы биотехнологии.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.

Май
31

Преимущества и проблемы.

Обсуждая в 1989 г. на страницах журнала “Trends in Biotechnology” перспективы использования биотехнологий в разных сферах сельского хозяйства сотрудники Федерального института в Цюрихе Николаус Гоч и Петер Риндер пишут о значении таких направлений как клонирование и перенос в растения новых генов ответственных за устойчивость к заболеваниям и контролирующих образование важных с экономической точки зрения метаболитов. Предполагается, что до 2007 г. будет проведено картирование генов большинства используемых в сельском хозяйстве одно- и двудольных растений и реализован искусственный перенос в них дополнительных генов. Перспективы успешного переноса генов, ответственных за фиксацию молекулярного азота, пока оцениваются невысоко из-за трудности решения этой проблемы. На данном этапе повышение эффективности фиксации азота за счет симбиотических и несимбиотических микроорганизмов представляется весьма реальным.

Говоря о быстром прогрессе в области генной инженерии растений, следует обратить внимание и на то, что в самое последнее время возникло и ширится движение экологов, в частности “зеленых”, против генно-инженерных работ с растениями. Они опасаются, что растения, которым придана устойчивость к гербицидам, могут быстро распространиться в природе с непредсказуемыми последствиями для культурных растений. Эти опасения небезосновательны. Поэтому можно ожидать, что генная инженерия растений будет развиваться преимущественно в направлении биотехнологического их использования. Основное внимание будет отдано культивированию клеток таких растений, которые продуцируют ценные препараты, а не созданию сортов полевых растений, устойчивых к химическим и биологическим вредителям. Конечно, это не относится к созданию растений, устойчивых к экстремальным условиям среды, ибо размножение соле-, засухо-, морозоустойчивых растения в любом случае будет полезным. Ведуться работы по строгому контролированию процесса опыления, которые в случае успеха помогут снять существующие опасения. В некоторых лабораториях пытаются получить растения с неактивной пыльцой (женская стерильность), чтобы исключить распространение пыльцы трансгенных растений.

Май
10

Биотехнология на основе клеток животных.

В последние годы значительные успехи достигнуты в биотехнологических работах, проводимых с использованием клеток животных. Уже длительное время применяют технику гибридизации животных клеток разного происхождения, а также перенос чужеродных генов в культивируемые клетки.

В середине 70-х годов вирусолог Рудольф Ениш (ФРГ) провел первый успешный эксперимент по переносу чужеродного гена в геном целого животного организма (мыши). В качестве переносчика гена (вектора) использовали вирус лейкоза мышей. В дальнейшем были отработаны различные варианты переноса генов в животных (трансгенные животные), включая прямую микроинъекцию в пронуклеус зиготы. Подобные эксперименты оказали решающее воздействие на вовлечение клеток животных в биотехнологию. Существенно то, что только на базе клеток животных можно получать такие важные для медицины биотехнологические продукты, как антитела и вакцины. Использование клеток животных для продуцирования других биологически активных продуктов пока, как правило, экономически менее выгодно, чем на базе микроорганизмов. Однако получить некоторые полноценные белки можно только из клеток животных.

Май
08

Топливом будущего считают водород.

Химический и электрохимический способы получения водорода неэкономичны. Поэтому специалисты обратили внимание на микроорганизмы, способные выделять водород. Еще в начале 60-х годов установили, что хлоропласты шпината в присутствии бактериального экстракта, содержащего фермент гидрогеназу, продуцируют водород. Это способны делать хемотрофные бактерии, цианобактерии, некоторые водоросли и простейшие. Сейчас предложено несколько вариантов биотехнологических систем для производства водорода, однако пока ни одна из них неприемлема для практических целей.

Не одно поколение ученых бьется над проблемой повышения эффективности фотосинтеза у микроорганизмов и растений. Задача эта еще далека от решения. Однако в результате исследований в области биологии фотосинтеза (в частности, выделения и характеристики различных мутантов фотосинтезирующих микроорганизмов) работы вышли на уровень, когда они могут стать основой для решения прикладных задач. Так, некоторые фотосинтезирующие микроорганизмы способны продуцировать аммоний за счет биоконверсии солнечной энергии. Поскольку гербициды подавляют фотосинтез, получение мутантов, не чувствительных к гербицидам - путь к созданию гербицидустойчивых сортов растений. Предполагается, что фотосинтезирующие бактерии будут участвовать в очистке промышленных газов, биодеградации токсических веществ и отходов производства.

Биотехнологической биоэнергетике предстоит ответить на вопросы, связанные с созданием биотопливных элементов, способных превращать химическую энергию субстратов в другие виды энергии, главным образом в электрическую. Такие элементы используют в настоящее время при создании биологических датчиков-биосенсоров.