Апр
07

Пути профилактики и лечения СПИДа.

Здесь укажем некоторые звенья, воздействия на которое должно приводить к подавлению размножения вируса. После того как вирусная частица тем или иным путем попала в кровь, она проникает в “свои” клетки, т. е. Т-лимфоциты, на поверхности которых находится белок-рецептор, специфически узнаваемый поверхностными белками вируса. Этот белок-рецептор, названный CD, частично высовывается наружу из мембраны Т-лимфоцитов и имеет конфигурацию, комплементарную к наружной части поверхностного белка ВИЧ. Оба выступающих элемента мембранных белков подходят друг к другу как ключ к замку, и когда ВИЧ соприкасается с поверхностью Т-лимфоцита, они прочно соединяются, мембраны сливаются и содержимое вируса проникает в цитоплазму клетки. Только клетки, имеющие на поверхности Cbj-рецепторы, становятся мишенью ВИЧ и заражаются им.

Когда в цитоплазму клетки попадают компоненты вирусной частицы, обратная транскриптаза начинает по РНК строить молекулы вирусной ДНК, которые проникают в ядро и внедряются в хромосому, после более или менее продолжительного (иногда - годы) прерывания в неактивной форме находящаяся в хромосоме клетки ДНК вируса (провирус) вдруг, подобно молчавшему вулкану, начинает действовать, порождая новые частицы. В этом процессе участвуют клеточные ферменты, факторы и механизмы, так как (это очень важно) процесс транскрипции вирусной ДНК по механизму ничем не отличается от транскрипции любого клеточного гена. Значит, на этой стадии (транскрипции) очень трудно какими-либо лекарствами остановить размножение вируса, ибо они будут губительны и для генов клетки, притом не только содержащих вирус, но и всех других клеток организма.

Известно, что когда какой-либо вирус (например, гриппа) проникает в организм, к нему вырабатываются антитела - иммунная система мобилизуется. При заражении вирусом СПИД поначалу иммунная система вырабатывает антитела и к нему (многие диагностикумы на СПИД основаны, на обнаружении не самого вируса, а антител к нему). Поэтому на первом этапе, когда иммунная система борется с вирусом, его количество растет медленно, требуются годы, чтобы он достиг критической массы и преодолел сопротивление иммунной системы. Поскольку он поражает именно ее, то победа в конечном счете остается за вирусом, так как медленно, но верно Т4-лимфоциты выходят из строя.

Март
15

Трансгенные мыши.

Всего за 10 лет (первые трансгенные мыши были получены в 1980 г.) создана уникальная область генно-инженерных животных. Трансгенные мыши всего за одно поколение претерпевают такие целенаправленные изменения, для достижения которых ранее требовалось проводить селекцию на 40 - 50 поколениях. Они способны продуцировать совершенно новые виды белковых продуктов, которые иногда оказывают эффективные воздействия на рост и развитие самих мышей. В результате, переноса дополнительного гена гормона роста (неважно, из какого источника - из другого животного, человека) образуется избыточное количество гормона роста, стимулирующего рост: размеры мыши удваиваются (таких трансгенных мышек называют гигантскими).

Трансгенные мыши стали обычными объектами лабораторных исследований и уже вносят неоценимый вклад в фундаментальные научные исследования. Однако они совершенно не пригодны для целен биотехнологического производства. Начиная с 1985 г. во многих лабораториях пытаются получить трансгенных сельскохозяйственных животных - овец, свиней. За это время удалось преодолеть методические трудности проведения таких работ на сельскохозяйственных животных. Уже получено большое число овец и свиней, содержащих чужеродные гены. Планируется получение ряда важных медицинских препаратов - фактора свертываемости крови, интерферонов и т. д.

Очень хотелось бы воспроизвести на сельскохозяйственных животных продемонстрированный на мышах аффект ускоренного роста. Специалисты считают, что трансгенные сельскохозяйственные животные - это живые биотехнологические фабрики XXI в., которые экологически будут наиболее чистыми производителями ценных белковых препаратов. Сегодня уже создана фундаментальная и методическая база, но требуется еще приспособить эти научно-технические достижения к условиям работы с сельскохозяйственными животными.

Фев
20

Трудности лечения.

Поскольку при СПИДе (по еще неизвестному механизму) поражается и центральная нервная система, которая закрыта от иммунной системы гематоэнцефалическим барьером, вакцина будет неэффективна после того, как вирус поразил эти органы. Кроме того, вакцины на основе убитых вирусов или вирусов с ослабленной инфекционностью, к сожалению, даже в опытных руках иногда могут служить источником инфекции (в США такие случаи были при вакцинации детей против полиомиелита). Более перспективны живые вакцины на основе рекомбинантного вируса осповакцины, созданные по схеме. Важно и то, на какой стадии заболевания используют вакцину. Очевидно, что вакцина против ретровирусов будет малоэффективна после того, как вирусная ДНК уже внедрилась в клетки.

Еще одна трудность лечения СПИДа состоит в том, что интегрированная вирусная ДНК может проявлять себя через длительный период, во время которого в ней могут произойти мутации, а при суперинфекции за счет механизма рекомбинации может в организме сформироваться более вирулентный (болезнетворный) штамм вируса. Сейчас основное направление состоит в попытках создать вакцины на основе белка оболочки ВИЧ. Такая вакцина, как ожидается, должна стимулировать появление антител, которые нейтрализуют вирус и будут также препятствовать взаимодействию вируса с клеткой-мишенью. Препятствием на пути получения такой вакцины является гиперизменчивость структуры белков оболочки ВИЧ. Сейчас ведется поиск консервативных (т. е. медленно изменяющихся) участков этого белка, способных выступать в качестве антигенов. Антитела, выработанные к таким участкам, оставались бы эффективными против вируса даже при гиперизменчивости других участков.

Для предотвращения связывания вируса с клеткой делаются попытки вводить в организм препараты рецептора CD4, который бы блокировал рецептор связывающие места вируса. При помощи методов генной инженерии уже получены препараты растворимого белка CD, В экспериментах вне организма этот препарат блокировал на оболочке ВИЧ участки связывания.

Одно из наиболее распространенных химических средств против СПИДа в настоящее время - азидотимидин (зидовудин), который подавляет процесс обратной транскрипции вирусной РНК. Избирательным антивирусным действием обладает препарат GLQ223, белок, выделенный из корневых клубней китайского огурца Trichosanthus kirillowi.

Блок трансляции вирусных мРНК возможен с помощью антисмысловых олигонуклеотидов. Уже синтезирован ряд таких соединений и показано, что они, связываясь с мРНК, препятствуют ее трансляции на рибосомах, т. е. мешают синтезу вирусных белков. Правильной модификации белков ВИЧ мешает кастаноспермин - растительный алкалоид. Выходу зрелых частиц ВИЧ (вирионов) из клеток препятствует а-интерферон, поэтому в принципе он может блокировать реинфицирование новых клеток.

Несмотря на то что обнаружено несколько агентов против ВИЧ, ни один из них не позволяет пока полностью предотвратить развитие заболевания. Обусловлено это множеством причин: нестабильностью соединений, наличием у них нежелательных побочных эффектов и главное - недостаточной эффективностью и др. В настоящее время исследователи не связывают свои надежды с каким-либо одним лекарственным препаратом. Видимо, необходима разработка разнообразных агентов способных воздействовать на разные этапы жизненного цикла ВИЧ. Но главное - это продолжающийся поиск принципиально новых подходов.

Фев
17

Выращивание кристаллов.

В условиях пониженного гравитационного поля резко улучшается также процесс создания белковых кристаллов больших размеров, представляющих ценность в частности, для рентгеноструктурных исследований и получения высокочистых препаратов. Кристаллизация белков происходит в условиях стабилизации молекул благоприятствующих проявлению сил слабого взаимодействия, которые в земных условиях подавляются более превалирующими действующими на больших расстояниях силами гравитации и конвекции. Это увеличивает число точек кристаллизации в растворе и способствует образованию большого числа маленьких кристаллов. В условиях невесомости удается получать существенно более крупные кристаллы.

Из нескольких разработанных для этого методов наиболее привлекает метод “висячей капли”. Каплю жидкости, содержащей белок, буфер и соли (иногда вместо солей - полиэтиленгликоль), подвешивают на нижней поверхности какой-либо опоры и дают уравновеситься. В результате испарения воды белок концентрируется и выпадает в осадок, образуя кристаллы. Этот процесс “выращивания” кристаллов растягивается часто на многие недели. В условиях невесомости (ракеты программы TEXUS) были получены кристаллы нескольких ферментов: лизоцима, р-галактозидазы.

Оказалось, что кристаллизация идет в этих условиях быстрее, а сами кристаллы крупнее в 27 (р-галактозидаза) и в 1000 (лизоцим) раз, чем в земных условиях. Как сообщила Гарвардская школа бизнеса, фармацевтические фирмы готовы платить 100 - 200 тыс. долл. за белки, закристаллизованные в условиях невесомости. Ведутся также работы для проведения в условиях невесомости кристаллизации белков в неприкрепленной, а в свободно плавающей в пространстве капле, что может улучшить качество образуемых кристаллов.

Условия невесомости более благоприятны также для такого процесса, как инкапсулирование клеток в полупроницаемые мембраны. Инкапсулированные клетки, например клетки поджелудочной железы животных, можно имплантировать (вживлять) в тело больных сахарным диабетом, где они могут продуцировать инсулин. Поскольку инсулин - низкомолекулярный белок, он будет проходить через мембрану в кровоток, а антитела не смогут проникать через мембрану, т. е. имплантированные таким способом клетки не будут отторгаться. Инкапсулированные клетки печени, например, можно использовать также для создания искусственных органов с целью очищения крови.