Май
22

Методы культивирования.

Все, о чем мы рассказываем, - еще не полностью готовые производственные биотехнологии, а лишь подготовка базы для их создания. Существует два тесно взаимосвязанных варианта будущего биотехнологического производства ценных продуктов из растений; культивирование целых растений и культивирование клеток.

Методы культивирования растительных клеток в питательных средах создали самостоятельную отрасль биотехнологического производства ценных препаратов. Если культуру получать из одной клетки, то все вновь выросшие клетки будут генетически идентичны и образуют клон. Такие клоны интенсивно размножающихся клеток, как и бактериальные культуры, - хорошие продуценты ценных растительных продуктов. Их производительность и экономичность зачастую значительно выше, чем у целых растений. Здесь, как и при работе с бактериями, можно использовать клетки, которые в растениях производят нужный продукт, а можно целенаправленно изменить клетку с помощью методов генной инженерии, сделав ее ценным продуцентом необходимого продукта. В производстве уже используются клеточные культуры следующих природных продуцентов: клетки табака, производящие убихинон-10 (применяют как витамин), культуру клеток барбариса, продуцирующую ятрорризин (спазмолитическое лекарственное средство), клетки воробейника, производящие шиконин (используются при лечении ран, ожогов, геморроя). Однако промышленное производство этих культур, за исключением, например, продуцентов шиконина, пока экономически невыгодно. Требуется дальнейшее усовершенствование технологии культивирования клеток и повышение их продуктивности.

Несомненно, что область клеточных биотехнологий в ближайшем будущем, после того как реализует свои возможности генная инженерия, станет важнейшим источником ценных продуктов. Сначала будут получены трансгенные растения, а затем из них - высокопродуктивные культуры клеток. Например, трансгенные растения рапса, в которые введены гены лей-энкефалина и других нейропептидов человека, соединенные с частью гена альбумина , продуцируют около 1 мг ценного рекомбинантного белка на 1 т семян.

Май
10

Вакцины.

Большое значение для медицины и сельского хозяйства имеют вакцины, которые вызывают активный иммунитет против инфекционных болезней. С помощью генной инженерии получены так называемые рекомбинантные вакцины.

Такой составной вирус экспрессировал слитый белок на поверхности инфицированных им клеток, растущих в культуре. При инъекциях этих клеток в цыплят почти все иммунизированные птицы были устойчивы к вирусу болезни Ньюкасле. Аналогичная живая вакцина была получена и для вируса бронхита птиц.

Отлажена техника изготовления вакцин-антигенов, которая заключается в клонировании и функционировании отдельных генов возбудителей болезней в Е. coli, дрожжах, клетках насекомых или млекопитающих. Вакцины-антигены высокостабильны, малоопасны как аллергены и неинфекционны. Одна из проблем, возникающая при использовании этих вакцин - наблюдающаяся низкая иммуногенность.

Чтобы пациенты легко переносили действие вакцин и для повышения их эффективности разработаны синтетические вакцины. Их создают с помощью соединения фрагментов белков, полисахаридов и других веществ микроорганизмов (к которым образуются антитела) с большими молекулами-носителями (адъювантами), которые усиливают иммуногенность антигенов. При этом к одной молекуле, стимулирующей иммунный ответ, могут быть присоединены фрагменты антигенов нескольких видов микробов и вирусов, что приводит к образованию поливакцин.

С помощью генной инженерии уже получены первые коммерчески доступные вакцины для человека пробактериального энтеротоксина, против гепатита Б.

Май
10

Растительные клетки - объекты биотехнологии.

Новый этап развития биотехнологии связан в первую очередь с использованием растительных клеток. Уже сейчас из растений получают около 25% фармацевтических препаратов. Они - сырье для тонкой химии, а также источник биохимических компонентов для косметических изделий и пищевых добавок. Биотехнология стремится повысить выход ценных продуктов растений, если нужно, специалисты изменяют их свойства, а также прививают им способность производить новые, не свойственные для них виды продуктов.

Благодаря новейшим открытиям молекулярной биологии и генетики и достижениям генной инженерии растения стали быстро вовлекать в сферу биотехнологии. Этому способствует ряд особенностей жизнедеятельности и размножения растений - способность к неограниченному вегетативному размножению, т. е. к регенерации полноценного растения из черенка, а в условиях биотехнологических систем - из небольшой группы клеток и даже из одной клетки. При культивировании в питательных средах растительные клетки способны в одних условиях неограниченно размножаться, быстро наращивать биомассу, в других - дифференцироваться, образовывать корешки, стебельки, листочки (формируя в пробирке миниатюрное растеньице), а затем переходить к цветению и плодоношению. Таким образом, весь свой биологический цикл растения могут осуществлять в контролируемых условиях биотехнологических систем. Оказывая на развивающиеся в этих условиях растения физические, химические и иные воздействия, можно направленно улучшать культивируемые сорта, повышать их продуктивность, использовать растительные клетки в качестве продуцентов биологически активных веществ.

Благодаря биотехнологии традиционные методы гибридизации растений (приведшие к “зеленой революции”, т. е. кардинальному повышению урожайности) расширились и стали проводиться на клеточном уровне. С помощью новых методов клеточной инженерии теперь сливают друг с другом клетки разных растений и получают из них новые гибридные растения. Новые методы чрезвычайно расширили границы спектра скрещиваемых растений, куда вошли не скрещивающиеся в природе виды. Однако техническая возможность соединения клеток очень отдаленных видов растений не всегда означает преодоление их биологической несовместимости, поэтому не все гибриды могут сохраняться.

Май
01

Новые сорта.

В результате этой сложной, но успешно проведенной работы был получен новый сорт помидоров с улучшенными свойствами, а именно - способностью более продолжительное время не размягчаться при хранении. Заметим, что на получение нового сорта традиционными методами требуется 10 и более лет, в этом случае сорт был получен всего за один сезон. Понятно, почему зарубежные фирмы (например, “Монсанта”) финансируют многомиллиардные научные исследования в области генной инженерии. В этой фирме разрабатывают методы переноса из бактерий в растения генов, кодирующих токсины, убивающие насекомых.

Токсический белок, продуцируемый микробом Bacillus Ihmingiensis, убивает личинок насекомых питающихся листьями. Этот токсин выделен в кристаллическом виде. Один из способов его использования - распыление на поверхность растения. Однако более экономичен и удобен перенос гена токсина в растения. В 1987 г. ген токсина, изолированный из бактерий успешно перенесли в геном табака. Его экспрессия привела к тому, что личинки насекомого Manduca secta погибал при скармливании листьев трансгенного растения

Аналогичные работы проводят с хлопчатником для придания ему устойчивости к гусеницам. Получены растения, содержащие тот же ген токсина. Кроме того, создан инсектицидоустойчивый трансгенный хлопчатник. В геном обычного хлопчатника введен ген ингибитора трипсина коровьего гороха, продукт которого подавляет активность протеаз в пищеварительной системе насекомых. Известны многие токсины, продуцируемые микроорганизмами и эффективно убивающие разные виды насекомых. Сейчас исследуют гены этих токсинов с целью создания, например, трансгенного картофеля, устойчивого к колорадскому жуку.