Апр
18

Биодеградация и биоконверсия.

Это важнейшие направления биотехнологии, основанные на использовании микроорганизмов. Ведь переработка (биодеградация) отходов и побочных продуктов сельского хозяйства и промышленности решает одновременно производственные и природоохранные задачи. Речь идет о достижении двух целей в едином процессе: утилизации (биодеградации) и превращении ненужного (как правило, экологически вредного) сырья в полезные продукты (биоконверсия).

Яркий пример биотехнологии, основанной на биодеградации в сочетании с биоконверсией - хорошо налаженная в Японии и других странах переработка отходов животноводческих комплексов с помощью синезеленых водорослей. Избавляясь от отходов, одновременно получают биомассу с высоким содержанием белка и биогаза, сильно обогащенный метаном. В Индии в настоящее время действует около 600 тыс. биоустановок по производству биогаза, обеспечивающих основную потребность в нем сельского хозяйства.

Одна из сложнейших проблем - утилизация целлюлозы. Целлюлоза - органическое соединение. На планете ежегодно синтезируется 4 - 1010 т-целлюлозы в результате фотосинтеза, т. е. в ней аккумулирована значительная часть солнечной энергии, поступающей на землю. Мировые ресурсы целлюлозы составляют 7×10 т. Это линейный полимер из мономеров целлобиозы, основу которой составляет глюкоза. Полное расщепление целлюлозы до глюкозы могло бы решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства, бумажной и текстильной промышленности. Расщепить целлюлозу непросто, так как она состоит из нерастворимых волокон, ассоциированных с другими полисахаридами - гемицеллюлозой, пектином, и окружена лигнином, закрывающим целлюлозу от ферментов. Животные не переваривают целлюлозу. В природе ее расщепляют микроорганизмы, например нитчатый гриб - Trichoderma reesei, который продуцирует большое количество целлюлолитических ферментов (целлюлаз), представляющих собой смесь эндоцеллюлаз и экзоцеллюлаз (расщепляют полимер соответственно изнутри цепочки и с концов) и (3-глюкозидазы. Однако деятельность этих и других известных природных микроорганизмов недостаточно эффективна для создания на их основе промышленной биотехнологии расщепления целлюлозы.

В этой кардинальной и масштабной проблеме, как ни в какой другой, требуется помощь генной инженерии. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт. Существует, однако, серьезное опасение, что генно-инженерные микроорганизмы с повышенной целлюлолитической способностью могут распространиться в природе и станут наносить ущерб растительному миру и изделиям из целлюлозы, окружающим человека повсеместно.

Апр
02

Получение и использовании ферментов.

Ферменты (энзимы) - белки, выполняющие функции биокатализаторов многочисленных химических (биохимических) реакций. Поскольку биотехнология основана на промышленном использовании биопроцессов, которые в значительной мере обеспечиваются ферментами, по существу, ни одна биотехнология не обходится без них. Ферментные системы микроорганизмов (бактерий, дрожжей) были первыми в истории человечества орудиями биотехнологий, на которых основано виноделие, пивоварение, переработка молока и т. д. Рассмотрим лишь 2 наиболее показательных примера состояния этих технологий в эпоху генной инженерии.

Пивоварение - старейшая биотехнологическая индустрия, базирующаяся на жизнедеятельности дрожжей, прежде всего Saccharomyces curevisiae, которые за последнее десятилетие стали одним из наиболее широко используемых генно-инженерных объектов, позволяющих создавать множество новых ценных штаммов. Так, исходные штаммы S. cerevisiae не способны переваривать декстрины, составляющие 20% полисахаридов ячменя, тогда как S. diastalicus содержит фермент амило-1,4глюкозидазу, расщепляющую декстрины (но эти дрожжи производят пиво худшего качества). Ген, кодирующий названный фермент, был изолирован из S. diaslaticus, перенесен и S. cerevisiae, и проблема была решена - получаемое с помощью генно-инженерного штамма пиво содержит очень мало сахаров, больше этанола и имеет улучшенные вкусовые качества.

Другая генно-инженерная операция - перенос а дрожжи из нитчатого гриба Aspergillus awamori гена, кодирующего гликоамидазу, которая расщепляет разветвленные высокомолекулярные полисахариды. Однако этот фермент очень устойчив в пиве и со временем все полисахариды превращаются в глюкозу, а пиво по мере хранения становится сладким. Чтобы устранить этот недостаток, ген перед переносом подвергли химической модификации, которая придала ферменту свойство разрушаться после завершения процесса брожения.

Поприщем генной инженерии стала и такая древняя биотехнология, как сыроварение, В технологии получения сыра ключевая роль принадлежит сычужному ферменту химозину, створаживающему молоко в желудке теленка. Потребность в химозине очень велика и далеко не удовлетворяется природным источником. Ген, кодирующий химозин, был проклонирован из геномной библиотеки коров и перенесен в дрожжи, которые после этого стали продуцентами ценного фермента.

Еще одна проблема в сыроварении - экономная утилизация сыворотку содержащей много ценных продуктов, в частности лактозу. Путем переноса в дрожжи генов (5-галактозидазы и лактозной пермеазы из бактерий получен штамм, который способен расти на сыворотке и производить спирт и биомассу, добавляемую к животным кормам.

Март
30

Биоэнэрготехнология.

Запасы энергии в растительном покрове Земли, создаваемой с помощью фотосинтеза, сопоставимы с запасами энергии природных ископаемых. Обычно сухую биомассу превращают в энергию в процессе сгорания, тогда как наиболее эффективный способ превращения с помощью микроорганизмов сырой биомассы в энергию - получение углеводородов биогаза (метана).

Метановое брожение было открыто еще в конце XVIII в. Это сложный процесс, в котором участвует несколько видов микроорганизмов (превалируют Methanobacterium formicicum и М. hungati). Биогаз, образующийся В результате такого брожения, представляет собой смесь, главные компоненты которой метан (65%), углекислый газ (30%) и сероводород (1%).

Для получения биогаза используют смеси органических веществ (навоз, солому, помет, водоросли, целлюлозную биомассу), что требует для метанообразования многокомпонентных микробных ассоциаций. Биогаз давно производят в Китае, Индии, на Филиппинах. Сейчас интерес к этому виду топлива проявляют и в некоторых странах Западной Европы (в частности, во Франции). Метан важен не только для производства биоэнергии. Его получение - эффективный способ утилизации отходов сельского хозяйства.

Экологически чистое топливо - этанол. В последние годы его начинают использовать в двигателях внутреннего сгорания. Наиболее пригодны для производства этанола злаки (особенно кукуруза), картошка, маниок, земляная груша, сахарная свекла, сахарный тростник. У двух последних основной запасной углевод - сахароза, у остальных - крахмал. Сахарозу и крахмал обычно сбраживают с помощью дрожжей Saccharomyces cerevisiae. В последнее время спектр используемых для этого микроорганизмов значительно расширился. Обращено, например, внимание на бактерию Zymomonas mobilis, способную сбраживать сок агавы. Она эффективнее сбраживает сахара и устойчивее к этанолу (конечному продукту), чем дрожжи. В настоящее время ведутся работы по генно-инженерному изменению этой бактерии с целью расширения круга утилизируемых ею субстратов. Перспективными для биоконверсии полисахаридных субстратов в этанол считаются некоторые термофильные бактерии. Так, Clostridium tlicrmohydrosulfuricum утилизирует с очень высоким выходом этанола продукты деградации целлюлозы.

Для повышения выхода продукта и стабилизации активности бактерий производят иммобилизацию их на разных носителях. Согласно прогнозам этанол, получаемый ферментацией углеводородсодержащих субстратов, к 2000 г. будет стоить дешевле, чем спирт, производимый по традиционной химической технологии.

Благодаря поиску микроорганизмов, содержащих углеводороды, которые можно использовать в качестве заменителей нефти, обнаружены некоторые микроводоросли (Bolhryacoceus, Isochrysis и др.), содержащие эти соединения в количестве от 15 до 80% сухой массы клеток. Наилучший состав углеводородов присущ В. braunii, что позволяет использовать ее в качестве источника энергии.

Март
22

Очищение и биодеградация.

Аэробные и анаэробные микроорганизмы уже давно и широко очищают воды от органических материалов. В бактериях рода Pseudomonas имеются оксиредуктазы, или гидроксилазы, способные разлагать углеводороды и высокотоксичные для окружающей среды ароматические вещества (бензол, толуол, ксилол). Гены, кодирующие в бактериях эти ферменты, локализованы в плазмидах. С помощью генной инженерии и генетических методов получен штамм Pseudomonas putida, который способен расти на неочищенной нефти и весьма эффективно очищать от нее сточные воды. Очистка сточных вод от металлов часто основана на поглощении их микроорганизмами. Так, на практике используют нитчатые грибы, которые способны в больших количествах поглощать торий.

Биодеградация - один из способов удаления пестицидов, способных длительное время сохраняться в почве. С помощью методов генной инженерии сконструирован штамм Pseudomonas ceparia, эффективно разрушающий 2, 4, 5-трихлорфеноксиацетат.

В настоящее время микробная биодеградация и биоконверсия служат основой для создания многих безотходных экологически чистых производств в сельском хозяйстве и промышленности. Все большее распространение получают биотехнологические цепочки, в которых отходы и побочные продукты одного биотехнологического процесса используются в качестве сырья для другого. Так, на гидролизатах растительного сырья выращивают дрожжи, а фильтрат культуральной жидкости используют для синтеза грибного белка. О некоторых других биотехнологиях, основанных на биодеградации и биоконверсии, мы расскажем в последующих двух разделах.