Май
27

Биосенсоры.

Высокочувствительные искусственные элементы биологической природы, способные распознавать микроколичества газообразных, жидких и твердых веществ, называют биосенсорами. Их используют в качестве датчиков аналитических приборов в промышленности, сельском хозяйстве, здравоохранении, охране окружающей среды.

Биосенсоры основаны на способности биологических молекул с очень высокой избирательностью и чувствительностью распознавать другие вещества и вступать с ними во взаимодействия - образовывать с ними комплексы, расщеплять и придавать им новые свойства. Поскольку биомолекул в живой природе бесчисленное разнообразие и многие из них способны распознавать определенные вещества, мы имеем неисчерпаемый источник биосенсоров. Первые биосенсоры были предложены американскими исследователями Л. Кларком и X. Лионсом в 1962 г., после чего началось их массовое использование. Биосенсоры стали применять в медицине и в химической технологии для выявления таких широко распространенных веществ, как углеводы, мочевина, креатинин, лактат, спирт, аскорбат, аспирин, аминокислоты. Сейчас в стадии внедрения в промышленное производство находятся биосенсоры для анализа газов и легколетучих веществ.

Май
10

Растительные клетки - объекты биотехнологии.

Новый этап развития биотехнологии связан в первую очередь с использованием растительных клеток. Уже сейчас из растений получают около 25% фармацевтических препаратов. Они - сырье для тонкой химии, а также источник биохимических компонентов для косметических изделий и пищевых добавок. Биотехнология стремится повысить выход ценных продуктов растений, если нужно, специалисты изменяют их свойства, а также прививают им способность производить новые, не свойственные для них виды продуктов.

Благодаря новейшим открытиям молекулярной биологии и генетики и достижениям генной инженерии растения стали быстро вовлекать в сферу биотехнологии. Этому способствует ряд особенностей жизнедеятельности и размножения растений - способность к неограниченному вегетативному размножению, т. е. к регенерации полноценного растения из черенка, а в условиях биотехнологических систем - из небольшой группы клеток и даже из одной клетки. При культивировании в питательных средах растительные клетки способны в одних условиях неограниченно размножаться, быстро наращивать биомассу, в других - дифференцироваться, образовывать корешки, стебельки, листочки (формируя в пробирке миниатюрное растеньице), а затем переходить к цветению и плодоношению. Таким образом, весь свой биологический цикл растения могут осуществлять в контролируемых условиях биотехнологических систем. Оказывая на развивающиеся в этих условиях растения физические, химические и иные воздействия, можно направленно улучшать культивируемые сорта, повышать их продуктивность, использовать растительные клетки в качестве продуцентов биологически активных веществ.

Благодаря биотехнологии традиционные методы гибридизации растений (приведшие к “зеленой революции”, т. е. кардинальному повышению урожайности) расширились и стали проводиться на клеточном уровне. С помощью новых методов клеточной инженерии теперь сливают друг с другом клетки разных растений и получают из них новые гибридные растения. Новые методы чрезвычайно расширили границы спектра скрещиваемых растений, куда вошли не скрещивающиеся в природе виды. Однако техническая возможность соединения клеток очень отдаленных видов растений не всегда означает преодоление их биологической несовместимости, поэтому не все гибриды могут сохраняться.

Май
10

Биотехнология на основе клеток животных.

В последние годы значительные успехи достигнуты в биотехнологических работах, проводимых с использованием клеток животных. Уже длительное время применяют технику гибридизации животных клеток разного происхождения, а также перенос чужеродных генов в культивируемые клетки.

В середине 70-х годов вирусолог Рудольф Ениш (ФРГ) провел первый успешный эксперимент по переносу чужеродного гена в геном целого животного организма (мыши). В качестве переносчика гена (вектора) использовали вирус лейкоза мышей. В дальнейшем были отработаны различные варианты переноса генов в животных (трансгенные животные), включая прямую микроинъекцию в пронуклеус зиготы. Подобные эксперименты оказали решающее воздействие на вовлечение клеток животных в биотехнологию. Существенно то, что только на базе клеток животных можно получать такие важные для медицины биотехнологические продукты, как антитела и вакцины. Использование клеток животных для продуцирования других биологически активных продуктов пока, как правило, экономически менее выгодно, чем на базе микроорганизмов. Однако получить некоторые полноценные белки можно только из клеток животных.

Май
08

Топливом будущего считают водород.

Химический и электрохимический способы получения водорода неэкономичны. Поэтому специалисты обратили внимание на микроорганизмы, способные выделять водород. Еще в начале 60-х годов установили, что хлоропласты шпината в присутствии бактериального экстракта, содержащего фермент гидрогеназу, продуцируют водород. Это способны делать хемотрофные бактерии, цианобактерии, некоторые водоросли и простейшие. Сейчас предложено несколько вариантов биотехнологических систем для производства водорода, однако пока ни одна из них неприемлема для практических целей.

Не одно поколение ученых бьется над проблемой повышения эффективности фотосинтеза у микроорганизмов и растений. Задача эта еще далека от решения. Однако в результате исследований в области биологии фотосинтеза (в частности, выделения и характеристики различных мутантов фотосинтезирующих микроорганизмов) работы вышли на уровень, когда они могут стать основой для решения прикладных задач. Так, некоторые фотосинтезирующие микроорганизмы способны продуцировать аммоний за счет биоконверсии солнечной энергии. Поскольку гербициды подавляют фотосинтез, получение мутантов, не чувствительных к гербицидам - путь к созданию гербицидустойчивых сортов растений. Предполагается, что фотосинтезирующие бактерии будут участвовать в очистке промышленных газов, биодеградации токсических веществ и отходов производства.

Биотехнологической биоэнергетике предстоит ответить на вопросы, связанные с созданием биотопливных элементов, способных превращать химическую энергию субстратов в другие виды энергии, главным образом в электрическую. Такие элементы используют в настоящее время при создании биологических датчиков-биосенсоров.