Апр
02

Получение и использовании ферментов.

Ферменты (энзимы) - белки, выполняющие функции биокатализаторов многочисленных химических (биохимических) реакций. Поскольку биотехнология основана на промышленном использовании биопроцессов, которые в значительной мере обеспечиваются ферментами, по существу, ни одна биотехнология не обходится без них. Ферментные системы микроорганизмов (бактерий, дрожжей) были первыми в истории человечества орудиями биотехнологий, на которых основано виноделие, пивоварение, переработка молока и т. д. Рассмотрим лишь 2 наиболее показательных примера состояния этих технологий в эпоху генной инженерии.

Пивоварение - старейшая биотехнологическая индустрия, базирующаяся на жизнедеятельности дрожжей, прежде всего Saccharomyces curevisiae, которые за последнее десятилетие стали одним из наиболее широко используемых генно-инженерных объектов, позволяющих создавать множество новых ценных штаммов. Так, исходные штаммы S. cerevisiae не способны переваривать декстрины, составляющие 20% полисахаридов ячменя, тогда как S. diastalicus содержит фермент амило-1,4глюкозидазу, расщепляющую декстрины (но эти дрожжи производят пиво худшего качества). Ген, кодирующий названный фермент, был изолирован из S. diaslaticus, перенесен и S. cerevisiae, и проблема была решена - получаемое с помощью генно-инженерного штамма пиво содержит очень мало сахаров, больше этанола и имеет улучшенные вкусовые качества.

Другая генно-инженерная операция - перенос а дрожжи из нитчатого гриба Aspergillus awamori гена, кодирующего гликоамидазу, которая расщепляет разветвленные высокомолекулярные полисахариды. Однако этот фермент очень устойчив в пиве и со временем все полисахариды превращаются в глюкозу, а пиво по мере хранения становится сладким. Чтобы устранить этот недостаток, ген перед переносом подвергли химической модификации, которая придала ферменту свойство разрушаться после завершения процесса брожения.

Поприщем генной инженерии стала и такая древняя биотехнология, как сыроварение, В технологии получения сыра ключевая роль принадлежит сычужному ферменту химозину, створаживающему молоко в желудке теленка. Потребность в химозине очень велика и далеко не удовлетворяется природным источником. Ген, кодирующий химозин, был проклонирован из геномной библиотеки коров и перенесен в дрожжи, которые после этого стали продуцентами ценного фермента.

Еще одна проблема в сыроварении - экономная утилизация сыворотку содержащей много ценных продуктов, в частности лактозу. Путем переноса в дрожжи генов (5-галактозидазы и лактозной пермеазы из бактерий получен штамм, который способен расти на сыворотке и производить спирт и биомассу, добавляемую к животным кормам.

Фев
19

Космическая биотехнология.

Зарождающаяся на наших глазах космическая биотехнология свидетельствует о том, что биотехнология проникает во все сферы производства. Как и другие виды инженерно-технологических работ, биотехнология делает первые шаги в космос, осваивая специфические неземные условия. С самых первых шагов было очевидно, что космос создает для биотехнологических процессов не только большие трудности, но и большие преимущества. Они обусловлены главным образом невесомостью, существенно изменяющей течение физико-химических процессов, на которых основаны многие биотехнологии. Это, прежде всего, относится к производственным процессам электрофоретического или хроматографического разделения белков и других биоматериалов. Невесомость создает следующие условия, важные для этих процессов. 1. Редуцирует конвекции (перенос тепла), вызванные плавучестью, и исключает седиментацию (осаждение под воздействием гравитационных сил). 2. Делает силы поверхностного натяжения больше гравитационных. 3. Обеспечивает протекание процессов без емкостей. В земных условиях температурные различия между жидкостями после их смешения, быстро выравниваются в результате конвекционных перемещений, вызванных плотностными различиями теплых и холодных частей жидкости. В условиях невесомости этого не происходит, что крайне важно для процессов разделения - сохраняется гетерогенность фаз и содержимого жидкостей, что качественно улучшает разрешающую способность методов разделения, повышает выход и чистоту получаемых продуктов.

Другая из упомянутых выше особенностей космических условий состоит в том, что жидкости из-за повышенной (в сравнении с земными условиями) величины поверхностного натяжения и понижения сил гравитации обретают сферические формы, не нуждающиеся в сосудах, емкостях, минимизируется энтропия жидкостей. Это создает благоприятные условия для процессов кристаллизации белков - важного для многих биотехнологий процесса получения высококачественных белковых продуктов и для рентгеноструктурных анализов белков. Почти полное отсутствие гравитации приводит к свободной флотации составных частей в свободной жидкости в отсутствии стенок сосудов, контейнеров, что также важно для технологии разделения. Ведь исключаются возмущающие нормальное течение процесса пристеночные явления, меняющие физико-механические свойства жидкости и “оказывающие воздействие на поведение находящихся в них компонентов. К тому же и сами стойки, какими бы они ни были нейтральными к источниками загрязнений и дополнительных электрических, химических сил, могут избирательно сорбировать вещества.

Для технологии важно наличие всех перечисленных условии. Не обязателен полет в космос, ибо невесомость может быть создана и искусственно. Существует ряд технических способов создания невесомости вне космоса которые на нынешнем этапе научно-технических достижений различаются между собой по продолжительности времени создаваемой невесомости и стоимости. На сегодняшний день для создания продолжительной невесомости лучше всего, естественно, орбитальные средства - пилотируемые и автоматические. К первым относятся космический “Шатл STS” США и советская космическая станция “Мир”. К автоматическим относятся многократно используемые спутники “EURECA” (США) и европейская космическая платформа “LIFESAT”.