Апр
26

Управление живыми клетками.

Первоначально во многих случаях ферменты использовали в биотехнологическом производстве только в составе живых клеток, которыми нужно уметь управлять так, чтобы мобилизовать содержащиеся в них ферменты на нужные для производства биопроцессы. Сделать это удается не всегда, поэтому биотехнология, основанная на использовании ферментов в составе клеток (и организмов), имеет пределы на пути повышения эффективности. Идеальной была бы система, в которой можно использовать каталитические свойства очищенных ферментов, создав нужные для каждого производства технологические цепочки. В постепенном вытеснении живых (полуоткрытых) систем, каковыми являются клетки и организмы, биохимическими, т. е. полностью открытыми системами, состоящими из изолированных клеточных структур, и заключается тенденция прогресса в биотехнологии. Однако на каждом этапе развития именно уровень научных и методических достижений определяет возможность отказа от клеток и перехода к открытой системе.

Важнейшее достоинство клеток - это хорошо налаженное автоматическое восполнение изнашивающихся структур и постоянное поддержание их в рабочем состоянии. Этого пока не удалось добиться в открытых системах, они неустойчивы и дороги. Поэтому на данном этапе биотехнология выделения и использования ферментов распространяется пока на те случаи, когда ферменты участвуют в производственных процессах, осуществляются относительно простые химические реакции в производственных масштабах - расщепление (гидролиз), сбраживание, обработка и т. д. Ферментам присущи свойства, которые делают возможным их промышленное применение как катализаторов органических синтезов. Они обладают высокой каталитической активностью и в отличие от неорганических катализаторов высокоспецифичны, работают при умеренных рН и температурах (до 50 - 60°С). Неорганические же катализаторы требуют жестких кислотных и температурных условий, разрушительно действующих как на субстрат, так и на продукт реакции.

Активность ферментов поддается регулированию в широких пределах направленным изменением условий среды, ее кислотности, добавками веществ”, активирующих или подавляющих фермент. Главный недостаток ферментов - “ранимость”, повреждаемость. Правда, достигнуты значительные успехи в изменении свойств ферментов - повышена их устойчивость. Удалось существенно расширить сферу потенциального применения ферментов - они теперь “работают” в ангидридных органических растворителях и суперкритических жидкостях.

Апр
24

Методы в космосе.

Два вида разделения биоматериалов испытывается в космических условиях: электрофорез и термодинамическое фазовое разделение. Как уже говорилось выше, в земных условиях в результате конвекции разделяемые вещества вновь перемешиваются. Конвекции возникают из-за того, что выделяемое электричеством тепло создает различия в жидкости, которые в условиях гравитации порождают конвекции. В условиях невесомости перемещение тепла минимизировано, что позволяет повысить напряжение электрического поля и тем самым - скорость процесса электрофоретического разделения.

За рубежом первые электрофоретические системы были использованы на борту “Аполлон-14″ в 1971 г., затем “Аполлон-16″ и “Союз-Аполлон”. Эффективность процесса разделения в невесомости была в сотни раз выше, чем в земных условиях, а качество разделения было лучше примерно в 4 раза. С помощью электрофореза в космических условиях был получен ценный медицинский препарат эритропоэтин - гормон, стимулирующий образование красных кровяных телец. Электрофоретическое разделение белков, в частности интерферона, проводится и на советских спутниках.

Очень хороший метод разделения биологических материалов основан на использовании несмешиваемых жидкостей (двухфазных систем), стремящихся обособиться по термодинамическому закону, по которому система должна минимизировать свободную энергию. В земных условиях этот метод крайне мало эффективен из-за того, что конвекция и седиментация смешивают разделяемые вещества с большей эффективностью, чем система их разделяет. В условиях невесомости метод показывает очень хорошие результаты. В настоящее время этот подход совершенствуется путем сочетания с электрическим полем.

Апр
19

Микроорганизмы в биотехнологическом производстве.

Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40-х годах, когда наладили производство пенпциллинов методами ферментации. В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов, липидов, нуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.

К многообразному миру микроорганизмов относятся прокариоты (одноклеточные организмы, не содержащие оформленных ядер) - бактерии, актиномицеты, риккетсии и низшие эукариоты (одноклеточные и многоклеточные организмы, имеющие сформированные ядра, в которых хромосомы окружены специальной пористой мембраной (липопротеидной природы), - дрожжи, нитчатые грибы, простейшие и водоросли. Из более 100 тыс. видов известных в природе микроорганизмов в биотехнологических процессах используют всего несколько сотен. Микробиологическая промышленность предъявляет к продуцентам жесткие требования, которые важны для технологии производства: высокая скорость роста, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению посторонней микрофлорой.

Апр
02

Получение и использовании ферментов.

Ферменты (энзимы) - белки, выполняющие функции биокатализаторов многочисленных химических (биохимических) реакций. Поскольку биотехнология основана на промышленном использовании биопроцессов, которые в значительной мере обеспечиваются ферментами, по существу, ни одна биотехнология не обходится без них. Ферментные системы микроорганизмов (бактерий, дрожжей) были первыми в истории человечества орудиями биотехнологий, на которых основано виноделие, пивоварение, переработка молока и т. д. Рассмотрим лишь 2 наиболее показательных примера состояния этих технологий в эпоху генной инженерии.

Пивоварение - старейшая биотехнологическая индустрия, базирующаяся на жизнедеятельности дрожжей, прежде всего Saccharomyces curevisiae, которые за последнее десятилетие стали одним из наиболее широко используемых генно-инженерных объектов, позволяющих создавать множество новых ценных штаммов. Так, исходные штаммы S. cerevisiae не способны переваривать декстрины, составляющие 20% полисахаридов ячменя, тогда как S. diastalicus содержит фермент амило-1,4глюкозидазу, расщепляющую декстрины (но эти дрожжи производят пиво худшего качества). Ген, кодирующий названный фермент, был изолирован из S. diaslaticus, перенесен и S. cerevisiae, и проблема была решена - получаемое с помощью генно-инженерного штамма пиво содержит очень мало сахаров, больше этанола и имеет улучшенные вкусовые качества.

Другая генно-инженерная операция - перенос а дрожжи из нитчатого гриба Aspergillus awamori гена, кодирующего гликоамидазу, которая расщепляет разветвленные высокомолекулярные полисахариды. Однако этот фермент очень устойчив в пиве и со временем все полисахариды превращаются в глюкозу, а пиво по мере хранения становится сладким. Чтобы устранить этот недостаток, ген перед переносом подвергли химической модификации, которая придала ферменту свойство разрушаться после завершения процесса брожения.

Поприщем генной инженерии стала и такая древняя биотехнология, как сыроварение, В технологии получения сыра ключевая роль принадлежит сычужному ферменту химозину, створаживающему молоко в желудке теленка. Потребность в химозине очень велика и далеко не удовлетворяется природным источником. Ген, кодирующий химозин, был проклонирован из геномной библиотеки коров и перенесен в дрожжи, которые после этого стали продуцентами ценного фермента.

Еще одна проблема в сыроварении - экономная утилизация сыворотку содержащей много ценных продуктов, в частности лактозу. Путем переноса в дрожжи генов (5-галактозидазы и лактозной пермеазы из бактерий получен штамм, который способен расти на сыворотке и производить спирт и биомассу, добавляемую к животным кормам.