Фев
23

Будущее биотехнологии.

По имеющимся в литературе оценкам, к 2000 г. белки с измененными свойствами, полученные целенаправленной модификацией структуры кодирующих их генов, будут составлять примерно 4% всех потребляемых белков на общую сумму 15 млрд. долл. Общее же количество пищевых продуктов, получаемых с помощью биотехнологии, к концу XX п. увеличится, по расчетам специалистов, по крайней мере, в 10 раз.

На использовании микроорганизмов основано производство ими аминокислот, в первую очередь так называемых незаменимых, которые могут быть полезными добавками в пищу животных и человека. Среди незаменимых аминокислот, промышленное производство которых уже давно налажено, первое место занимает лизин, затем треонин и глутаминовая кислота. Получены штаммы Brevibacterium flavum, которые превращают в лизин более одной трети сахаров, содержащихся в питательной среде.

В СССР во ВНИИ генетики и селекции промышленных микроорганизмов с помощью генно-инженерных методов сконструированы высокопродуктивные штаммы Е. coli продуценты L-треонина, L-лизина и L-триптофана, которые используются и промышленности.

Интерес к микробиологическим способам промышленного производства аминокислот вызван также и тем, что они позволяют получать L-аминокислоты в чистом виде, тогда как при химическом синтезе получают рацемические смеси, содержащие L- и D-аминокислоты. Последние не входят в состав природных белков (они содержатся в незначительных количествах лишь в некоторых пептидах микроорганизмов, в частности пептидах, являющихся антибиотиками).

Производство витаминов. Напомним, что витамины - это низкомолекулярные органические соединения, роль которых для нормальной жизнедеятельности организма хорошо известна. Поскольку в пищевых продуктах витаминов содержится немного (10 - 100 мг на 100 г съедобной части продукта) и они быстро разрушаются, требуется витаминизация готовой пищи и продуктов. Поэтому уже давно витамины производят в больших количествах. Традиционные способы получения витаминов основаны либо на переработке больших количеств ценного сырья, либо (в редких случаях) на химическом синтезе. Поэтому витаминная промышленность нуждается в более эффективных технологиях. Такие технологии успешно создаются.

С помощью лишь генетических манипуляций (воздействием на регуляцию метаболизма) были получены штаммы микроорганизмов, которые производят в десятки тысяч раз больше витаминов, чем необходимо для их роста. Это - штамм Ashbya gossypii - продуцент рибофлавина, штаммы Pseuclomonas dеnitrificans и Propioribacterium freudenrcechii, производящие витамин В2 и др. В СССР на базе Bacillus subtilis сконструирован эффективный продуцент витамина B2.

Микробиологические технологии позволили решить и задачу производства аскорбиновой кислоты (витамин С). В Японии разработан эффективный ферментативный способ получения стабильного производного витамина С - аскорбил-2-фосфата, который используют в качестве антиоксиданта.

Помимо широкого применения в медицине в качест-пе профилактических и лечебных средств, получаемые микробиологическим путем витамины В2 и В2 добавляют в пищу животным для сбалансирования кормов.

Фев
23

Антинела.

Традиционным способом невозможно получить моноспецифические, или, как говорят, моноклинальные антитела (сокращенно МАТ). Для этого необходимо разделить либо смесь антител, либо В-клетки на отдельные виды. Эта задача была решена в 1975 г. немецкими специалистами Даном Келлером и Досоном Мелстейном, которые разработали метод создания гибридом. Метод основан на слиянии клеток опухоли с В-лимфоцитами и получении клеточных гибридов или гибридом. Опухолевые клетки придают лимфоцитам способность к неограниченному размножению вне организма с сохранением их способности продуцировать и секретировать в культуральную среду антитела. В условиях культивирования гибридом вне организма можно из каждой гибридной клетки получить обособленный клон, производящий антитела одной специфичности - МАТ.

В последнее время разработана процедура получения неспецифических МАТ, основанная на слиянии двух разных гибридов. Гибридная гибридома (фузома) обеспечивает образование одного иммуноглобулина с антигенсвязывающей способностью, характерной для обоих партнеров. Сейчас гибридомы и фузомы широко используют для производства гомогенных антител, специфичных для почти любого антигена.

Новое направление в иммунобиотехнологии - создание искусственных антител, обладателей необычных свойств. Ген тяжелой цепи иммуноглобулина (молекулы антитела) выделяли гибридомы, которая продуцировала иммуноглобулин против химического агента 4-гидрокси-З-нитрофенацетн-ла (ГНФ). У этого гена вариабельная (изменчивая) область (V) соответствует антигену. Затем в константную область (С) гена иммуноглобулина вставляли ген фермента ДНКазы из Staphylococcus aureus. Образующийся рекомбинантный (гибридный) ген кодировал рекомбинантный белок, состоящий из изменяющейся области и части константной области иммуноглобулина, а также ДНКазы. При функционировании этого гена в клетках, продуцирующих легкую цепь иммуноглобулина, происходила самосборка и образовывался рекомбинантный (гибридный) иммуноглобулин, состоящий из легкой и тяжелой цепей (антитело). Это антитело было специфично по отношению к ГНФ и в то же время обладало ДНКазной активностью. Таким образом, можно осуществлять разнообразные комбинации компонентов антител, получать новые их формы, отсутствующие в природе.

Широкое применение МАТ нашли в сфере науки и в медицине для диагностики и лечения заболевании, вызываемых патогенами, прежде всего микроорганизмами и их токсинами. С помощью биосенсоров (см. выше), сконструированных на основе МАТ, диагностируют беременность, выявляют предрасположенность к диабету, ревматоидному артриту, диагностируют наследственные заболевания. Используют МАТ также для диагностики и лечения рака, СПИДа и т. д.

Рынок сбыта биотехнологических продуктов, предназначенных для иммунотерапии, непрерывно растет: в США в 1987 г. его объем равнялся 1,5 млрд. долл., а к 1993 г. ожидается, что он составит 8,6 млрд. долл. Вне медицины мат. широко используют в биологических датчиках (биосенсорах), применяемых для тестирования качества пищевой продукции, для диагностики болезней животных и растений.

Еще одно новое направление в иммунобиотехнологии - получение каталитических антител, абизимов, соединяющих в себе каталитический центр фермента и связывающий центр антитела. Некоторые абизимы уже начинают производиться промышленностью. В качестве примера такого абизима можно привести МАТ к фосфонамидату, которые способны катализировать гидролиз карбоксамида.

Фев
20

Трудности лечения.

Поскольку при СПИДе (по еще неизвестному механизму) поражается и центральная нервная система, которая закрыта от иммунной системы гематоэнцефалическим барьером, вакцина будет неэффективна после того, как вирус поразил эти органы. Кроме того, вакцины на основе убитых вирусов или вирусов с ослабленной инфекционностью, к сожалению, даже в опытных руках иногда могут служить источником инфекции (в США такие случаи были при вакцинации детей против полиомиелита). Более перспективны живые вакцины на основе рекомбинантного вируса осповакцины, созданные по схеме. Важно и то, на какой стадии заболевания используют вакцину. Очевидно, что вакцина против ретровирусов будет малоэффективна после того, как вирусная ДНК уже внедрилась в клетки.

Еще одна трудность лечения СПИДа состоит в том, что интегрированная вирусная ДНК может проявлять себя через длительный период, во время которого в ней могут произойти мутации, а при суперинфекции за счет механизма рекомбинации может в организме сформироваться более вирулентный (болезнетворный) штамм вируса. Сейчас основное направление состоит в попытках создать вакцины на основе белка оболочки ВИЧ. Такая вакцина, как ожидается, должна стимулировать появление антител, которые нейтрализуют вирус и будут также препятствовать взаимодействию вируса с клеткой-мишенью. Препятствием на пути получения такой вакцины является гиперизменчивость структуры белков оболочки ВИЧ. Сейчас ведется поиск консервативных (т. е. медленно изменяющихся) участков этого белка, способных выступать в качестве антигенов. Антитела, выработанные к таким участкам, оставались бы эффективными против вируса даже при гиперизменчивости других участков.

Для предотвращения связывания вируса с клеткой делаются попытки вводить в организм препараты рецептора CD4, который бы блокировал рецептор связывающие места вируса. При помощи методов генной инженерии уже получены препараты растворимого белка CD, В экспериментах вне организма этот препарат блокировал на оболочке ВИЧ участки связывания.

Одно из наиболее распространенных химических средств против СПИДа в настоящее время - азидотимидин (зидовудин), который подавляет процесс обратной транскрипции вирусной РНК. Избирательным антивирусным действием обладает препарат GLQ223, белок, выделенный из корневых клубней китайского огурца Trichosanthus kirillowi.

Блок трансляции вирусных мРНК возможен с помощью антисмысловых олигонуклеотидов. Уже синтезирован ряд таких соединений и показано, что они, связываясь с мРНК, препятствуют ее трансляции на рибосомах, т. е. мешают синтезу вирусных белков. Правильной модификации белков ВИЧ мешает кастаноспермин - растительный алкалоид. Выходу зрелых частиц ВИЧ (вирионов) из клеток препятствует а-интерферон, поэтому в принципе он может блокировать реинфицирование новых клеток.

Несмотря на то что обнаружено несколько агентов против ВИЧ, ни один из них не позволяет пока полностью предотвратить развитие заболевания. Обусловлено это множеством причин: нестабильностью соединений, наличием у них нежелательных побочных эффектов и главное - недостаточной эффективностью и др. В настоящее время исследователи не связывают свои надежды с каким-либо одним лекарственным препаратом. Видимо, необходима разработка разнообразных агентов способных воздействовать на разные этапы жизненного цикла ВИЧ. Но главное - это продолжающийся поиск принципиально новых подходов.

Фев
19

Космическая биотехнология.

Зарождающаяся на наших глазах космическая биотехнология свидетельствует о том, что биотехнология проникает во все сферы производства. Как и другие виды инженерно-технологических работ, биотехнология делает первые шаги в космос, осваивая специфические неземные условия. С самых первых шагов было очевидно, что космос создает для биотехнологических процессов не только большие трудности, но и большие преимущества. Они обусловлены главным образом невесомостью, существенно изменяющей течение физико-химических процессов, на которых основаны многие биотехнологии. Это, прежде всего, относится к производственным процессам электрофоретического или хроматографического разделения белков и других биоматериалов. Невесомость создает следующие условия, важные для этих процессов. 1. Редуцирует конвекции (перенос тепла), вызванные плавучестью, и исключает седиментацию (осаждение под воздействием гравитационных сил). 2. Делает силы поверхностного натяжения больше гравитационных. 3. Обеспечивает протекание процессов без емкостей. В земных условиях температурные различия между жидкостями после их смешения, быстро выравниваются в результате конвекционных перемещений, вызванных плотностными различиями теплых и холодных частей жидкости. В условиях невесомости этого не происходит, что крайне важно для процессов разделения - сохраняется гетерогенность фаз и содержимого жидкостей, что качественно улучшает разрешающую способность методов разделения, повышает выход и чистоту получаемых продуктов.

Другая из упомянутых выше особенностей космических условий состоит в том, что жидкости из-за повышенной (в сравнении с земными условиями) величины поверхностного натяжения и понижения сил гравитации обретают сферические формы, не нуждающиеся в сосудах, емкостях, минимизируется энтропия жидкостей. Это создает благоприятные условия для процессов кристаллизации белков - важного для многих биотехнологий процесса получения высококачественных белковых продуктов и для рентгеноструктурных анализов белков. Почти полное отсутствие гравитации приводит к свободной флотации составных частей в свободной жидкости в отсутствии стенок сосудов, контейнеров, что также важно для технологии разделения. Ведь исключаются возмущающие нормальное течение процесса пристеночные явления, меняющие физико-механические свойства жидкости и “оказывающие воздействие на поведение находящихся в них компонентов. К тому же и сами стойки, какими бы они ни были нейтральными к источниками загрязнений и дополнительных электрических, химических сил, могут избирательно сорбировать вещества.

Для технологии важно наличие всех перечисленных условии. Не обязателен полет в космос, ибо невесомость может быть создана и искусственно. Существует ряд технических способов создания невесомости вне космоса которые на нынешнем этапе научно-технических достижений различаются между собой по продолжительности времени создаваемой невесомости и стоимости. На сегодняшний день для создания продолжительной невесомости лучше всего, естественно, орбитальные средства - пилотируемые и автоматические. К первым относятся космический “Шатл STS” США и советская космическая станция “Мир”. К автоматическим относятся многократно используемые спутники “EURECA” (США) и европейская космическая платформа “LIFESAT”.