Март
26

Производство пищевых белков и аминокислот.

Уже давно микроорганизмы используют как источник белка для питания человека и животных. Еще в годы первой мировой войны один из основоположников молекулярной биологии Макс Дельбрюк с коллегами в Германии (в 1937 г. переехал в США) разработали первый технологический процесс промышленного культивирования пивных дрожжей для их добавления в супы и колбасы. Белки, продуцируемые бактериями или дрожжами и используемые в пищевых целях, получили название белки одноклеточных организмов (БОО).

На первом этапе в качестве сырья для микроорганизмов использовали в основном углеводороды нефти. Затем интерес был проявлен к другим субстратам, прежде всего к природным газам (метан). Как субстраты для получения БОО из дрожжей используют некоторые промышленные отходы (например, отработанный сульфитный щелок с бумажных комбинатов, молочную сыворотку - побочный продукт сыроварения, мелассу (патока), отходы спиртоводочных заводов). Промышленный продукт получают в виде суммарной биомассы. Разработаны промышленные линии для производства и переработки микроводорослей с целью получения БОО. Объем дрожжевой биомассы, полученной в мире в 1985 г., превысил 1 млн. т. Ожидается, что в 1990 г. этот объем возрастет более чем в 2 раза.

Производство БОО имеет многие преимущества перед производством белка в животноводстве и растениеводстве: 500 кг дрожжей дают за сутки 80 кг белков, а у быка того же веса суточный привес составляет в лучшем случае 500 г белка. Однако БОО используют в основном как корм для скота, и лишь в будущем можно ожидать создания технологий получения БОО, пригодных для питания человека. Перспективно в этом отношении культивирование некоторых грибов (Fusarium), зеленых водорослей (Chlorella), цианобактерий (Spirulina), имеющих адекватные для человека органолептические свойства. В настоящее время уже налажено производство на базе крахмала волокнистой массы Fusarium как источника пищи для человека.

Изменения в генах, осуществленные с помощью генной инженерии, могут модифицировать структуру и улучшать свойства пищевых белков. Наибольший интерес в плане таких манипуляций привлекают к себе 3 белка животных и растений: овальбумин курицы, составляющий большую часть (54%) белка яйца, казеины (главная фракция в молоке) и белки сои (42% в бобах). Например, манипуляции с кодирующей частью гена k-казеина, в результате которых из белка элиминировался фрагмент, расположенный между 9-й и 17-й аминокислотами, а также” цистеин, участвующий в образовании дисульфидной связи, привели к тому, что новый белок как пищевой продукт стал более качественным.

Март
15

Трансгенные мыши.

Всего за 10 лет (первые трансгенные мыши были получены в 1980 г.) создана уникальная область генно-инженерных животных. Трансгенные мыши всего за одно поколение претерпевают такие целенаправленные изменения, для достижения которых ранее требовалось проводить селекцию на 40 - 50 поколениях. Они способны продуцировать совершенно новые виды белковых продуктов, которые иногда оказывают эффективные воздействия на рост и развитие самих мышей. В результате, переноса дополнительного гена гормона роста (неважно, из какого источника - из другого животного, человека) образуется избыточное количество гормона роста, стимулирующего рост: размеры мыши удваиваются (таких трансгенных мышек называют гигантскими).

Трансгенные мыши стали обычными объектами лабораторных исследований и уже вносят неоценимый вклад в фундаментальные научные исследования. Однако они совершенно не пригодны для целен биотехнологического производства. Начиная с 1985 г. во многих лабораториях пытаются получить трансгенных сельскохозяйственных животных - овец, свиней. За это время удалось преодолеть методические трудности проведения таких работ на сельскохозяйственных животных. Уже получено большое число овец и свиней, содержащих чужеродные гены. Планируется получение ряда важных медицинских препаратов - фактора свертываемости крови, интерферонов и т. д.

Очень хотелось бы воспроизвести на сельскохозяйственных животных продемонстрированный на мышах аффект ускоренного роста. Специалисты считают, что трансгенные сельскохозяйственные животные - это живые биотехнологические фабрики XXI в., которые экологически будут наиболее чистыми производителями ценных белковых препаратов. Сегодня уже создана фундаментальная и методическая база, но требуется еще приспособить эти научно-технические достижения к условиям работы с сельскохозяйственными животными.

Март
08

Перспективы лечения СПИДа.

Перспективным представляется использование, например, видоизмененных регуляторных белков ВИЧ и которые из них полностью подавляют функционирование нормальных белков и предотвращают этим размножение вируса. Теоретически гены, кодирующие такие мутантные белки, можно вводить в стволовые клетки костного мозга в культуре, а затем трансформированные клетки переносить в костный мозг человека.

Для профилактики СПИДа создают диагностикумы для быстрого и однозначного обнаружения ВИЧ. Эта задача сейчас решена - есть хорошие диагностиками, налажено их массовое производство. Большинство таких диагностикумов основано па выявлении в крови вирусных белков с помощью антител. Но и здесь интенсивно ищут новые подходы. Перспективным считают обнаружение следовых количеств ВИЧ с помощью цепной полимеразной реакции. В результате 20 последовательно проведенных циклов “денатурация - синтез” в течение короткого времени количество анализируемой ДНК в пробе возрастает в миллионы раз, и она легко определяется с помощью реагентов.

Общественное движение за решение проблемы СПИДа только набирает силу (в нашей стране этот процесс идет с большом задержкой). Должно быть полностью осознано что наряду с ядерной опасностью и экологией СПИД стал общемировой проблемой. Необходимость в срочной мобилизации международных ученых привела к созданию глобальной программы по СПИДу, координируемой Всемирной Организацией здравоохранения (ВОЗ). Над созданием вакцин работают лаборатории многих стран, объединенных в специальную программу IIIVAC (от англ. HIV-vaccine) и возглавляемой первооткрывателем ретровирусов человека - Робертом Галло.

Пока же кривая числа зарегистрированных больных и вирусоносителей поднимается все выше: только в США за прошедшие годы больных было в 1987 г 50 тыс. в 1988 г. - 66464 человек, в 1989 г. - 113211. По данным ВОЗ, в 159 странах мира в феврале 1990 г. было зарегистрировано 215 тыс. больных (по неофициальным данным, их в 2 - 2,5 раза больше). Прогнозируется, что их число только в США составит в 1991 г 270 тыс. в 1992 г. - 365 тыс., в 1993 г. - 450 тыс. человек. Число вирусоносителей во всем мире оценивается сейчас от 5 до 10 млн. Ожидается резкий подъем вирусоносительства в ближайшие годы в СССР. Возможно ли, чтобы СПИД устоял против современного мира? Ученые уверены, что он будет побежден, хотя и неясно, когда и какой ценой. Такая оценка сегодняшних возможностей медицины в лечении СПИДа может показаться несправедливой, учитывая, что в популярной печати часто появляются сообщения, которые позволяют предполагать либо о решении проблемы лечения СПИДа, либо о близости такого решения. К сожалению, это заблуждение характерно и для других острых медицинских проблем (например, онкологической) Так недавно в газетах сообщалось об успехе в лечении больных СПИДом, достигнутом благодаря прогреву крови выкаченной из тела больного и затем влитой обратно. Однако в научной медицинской литературе пока нет достоверного описания и обоснования такого метода лечения.

Фев
28

Вирусоустойчивость.

Нельзя не сказать о многочисленных попытках получения растений, устойчивых к вирусам, наносящим огромный урон сельскому хозяйству. Спектр вирусов, инфицирующих сельскохозяйственные растения, велик. Ежегодно только вирус мозаики томата наносит ущерб на 50 млн. долл., а вирусы зерновых - на 1 - 2 млрд. долл. Наиболее перспективным способом зашиты растений от вирусов считают индуцирование у растений “иммунитета” к вирусам методом, сходным с иммунизацией. Например, ген белка оболочки вируса табачной мозаики перенесли в клетки табака и получили трансгенные растения, у которых 0,1% всех белков листьев был представлен вирусным белком. Значительная часть таких растений при инфицировании вирусом не проявляла никаких симптомов заболевания. Молекулярный механизм подавления вирусной инфекции пока неясен, существует несколько предположений. Сейчас планируется этим путем получать вирусорезистентные зерновые культуры.

Проводятся эксперименты по созданию растений, устойчивых к заболеваниям благодаря переносу в них вирусных генов в антисмысловой ориентации (т. е. анти-РНК вируса). Один из подходов повышения устойчивости растений к вирусам, не связанный с генной инженерией, основан на культивировании вирусов табачной и томатной мозаики и вирусов цитрусовых в специальных условиях (обработка азотной кислотой, повышенные температуры), в результате чего они утрачивают патогенность. Такие ослабленные вирусы служат своеобразной вакциной для растений.