Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).
Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.
До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.
Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.
В организме он продуцируется клетками передней доли гипофиза. Вес этой доли - меньше одной десятой грамма, и лишь небольшая часть ее клеток занята выработкой гормона роста. Его нехватка в организме снижает темп роста, вызывает карликовость (карликовые мыши весят примерно в 2 раза меньше нормальных). Введением гормона можно нормализовать рост.
В медицине при лечении одного пациента требуется 7 мг в неделю очищенного гормона, который ранее получали из гипофиза человека (трупного материала). Наряду с этим уже налажено микробиологическое производство генно-инженерного гормона, позволяющее получать 100 мг препарата из 1 л культуральной среды. В принципе этим способом можно производить килограммы гормона, причем независимо от природы гормона и клеток, где он производится в норме. Генио-инженерное микробиологическое производство выравнивает (унифицирует) условия наработки всех продуктов, т. е. делает биотехнологию индустриальной. Старьте же способы получения в сильной мере зависят от особенностей ткани и концентрации в ней гормона, требуют иногда переработки огромных масс дорогостоящих тканей. К примеру, для получения 25 - 30 мкг гормона секретина необходимо 1 т кишечника коров.
Список производимых гормонов непрерывно пополняется, и их очередность определяется как практической важностью, так и готовностью науки. Создать необходимые продуценты. К гормонам, производство которых начато или начинается, относятся эритропоэтин (регулятор образования эритроцитов и, следовательно, гемоглобина), энкефалины и эндорфины (гормоны нервной системы, которые применяют для снятия болевых ощущений, улучшения памяти, тонуса, настроения).
Микробные клетки пригодны и для производства некоторых стероидных гормонов. Например, Artbrobacter globiformis используют для синтеза преднизолона из гидрокортизона, Микробиологическая трансформация позволяет резко сократить число этапов химического синтеза гормона надпочечников - кортизона.
Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40-х годах, когда наладили производство пенпциллинов методами ферментации. В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов, липидов, нуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.
К многообразному миру микроорганизмов относятся прокариоты (одноклеточные организмы, не содержащие оформленных ядер) - бактерии, актиномицеты, риккетсии и низшие эукариоты (одноклеточные и многоклеточные организмы, имеющие сформированные ядра, в которых хромосомы окружены специальной пористой мембраной (липопротеидной природы), - дрожжи, нитчатые грибы, простейшие и водоросли. Из более 100 тыс. видов известных в природе микроорганизмов в биотехнологических процессах используют всего несколько сотен. Микробиологическая промышленность предъявляет к продуцентам жесткие требования, которые важны для технологии производства: высокая скорость роста, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению посторонней микрофлорой.
Это важнейшие направления биотехнологии, основанные на использовании микроорганизмов. Ведь переработка (биодеградация) отходов и побочных продуктов сельского хозяйства и промышленности решает одновременно производственные и природоохранные задачи. Речь идет о достижении двух целей в едином процессе: утилизации (биодеградации) и превращении ненужного (как правило, экологически вредного) сырья в полезные продукты (биоконверсия).
Яркий пример биотехнологии, основанной на биодеградации в сочетании с биоконверсией - хорошо налаженная в Японии и других странах переработка отходов животноводческих комплексов с помощью синезеленых водорослей. Избавляясь от отходов, одновременно получают биомассу с высоким содержанием белка и биогаза, сильно обогащенный метаном. В Индии в настоящее время действует около 600 тыс. биоустановок по производству биогаза, обеспечивающих основную потребность в нем сельского хозяйства.
Одна из сложнейших проблем - утилизация целлюлозы. Целлюлоза - органическое соединение. На планете ежегодно синтезируется 4 - 1010 т-целлюлозы в результате фотосинтеза, т. е. в ней аккумулирована значительная часть солнечной энергии, поступающей на землю. Мировые ресурсы целлюлозы составляют 7×10 т. Это линейный полимер из мономеров целлобиозы, основу которой составляет глюкоза. Полное расщепление целлюлозы до глюкозы могло бы решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства, бумажной и текстильной промышленности. Расщепить целлюлозу непросто, так как она состоит из нерастворимых волокон, ассоциированных с другими полисахаридами - гемицеллюлозой, пектином, и окружена лигнином, закрывающим целлюлозу от ферментов. Животные не переваривают целлюлозу. В природе ее расщепляют микроорганизмы, например нитчатый гриб - Trichoderma reesei, который продуцирует большое количество целлюлолитических ферментов (целлюлаз), представляющих собой смесь эндоцеллюлаз и экзоцеллюлаз (расщепляют полимер соответственно изнутри цепочки и с концов) и (3-глюкозидазы. Однако деятельность этих и других известных природных микроорганизмов недостаточно эффективна для создания на их основе промышленной биотехнологии расщепления целлюлозы.
В этой кардинальной и масштабной проблеме, как ни в какой другой, требуется помощь генной инженерии. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт. Существует, однако, серьезное опасение, что генно-инженерные микроорганизмы с повышенной целлюлолитической способностью могут распространиться в природе и станут наносить ущерб растительному миру и изделиям из целлюлозы, окружающим человека повсеместно.