Фев
28

Вирусоустойчивость.

Нельзя не сказать о многочисленных попытках получения растений, устойчивых к вирусам, наносящим огромный урон сельскому хозяйству. Спектр вирусов, инфицирующих сельскохозяйственные растения, велик. Ежегодно только вирус мозаики томата наносит ущерб на 50 млн. долл., а вирусы зерновых - на 1 - 2 млрд. долл. Наиболее перспективным способом зашиты растений от вирусов считают индуцирование у растений “иммунитета” к вирусам методом, сходным с иммунизацией. Например, ген белка оболочки вируса табачной мозаики перенесли в клетки табака и получили трансгенные растения, у которых 0,1% всех белков листьев был представлен вирусным белком. Значительная часть таких растений при инфицировании вирусом не проявляла никаких симптомов заболевания. Молекулярный механизм подавления вирусной инфекции пока неясен, существует несколько предположений. Сейчас планируется этим путем получать вирусорезистентные зерновые культуры.

Проводятся эксперименты по созданию растений, устойчивых к заболеваниям благодаря переносу в них вирусных генов в антисмысловой ориентации (т. е. анти-РНК вируса). Один из подходов повышения устойчивости растений к вирусам, не связанный с генной инженерией, основан на культивировании вирусов табачной и томатной мозаики и вирусов цитрусовых в специальных условиях (обработка азотной кислотой, повышенные температуры), в результате чего они утрачивают патогенность. Такие ослабленные вирусы служат своеобразной вакциной для растений.

Фев
27

Трансгенные животные.

Разработано несколько методов введения генов в яйцеклетки или в ранние эмбрионы где они включаются в хромосомы и передаются вместе с дочерними хромосомами во все клетки развивающегося организма. В зависимости от того, какой регулятор содержит чужеродный ген, он функционирует в разных тканях. Например, если к перенесенному гену независимо от того, откуда он выделен (из бактерий, растений чело века, животного), подсоединен регулятор гена мыши который в норме функционирует в печени, то перенесенный ген будет функционировать в печени трансгенного животного. Следовательно, подбирая регуляторный элемент к любому гену, можно заранее “запланировать” его работу в том органе, в котором желательно.

Получено множество трансгенных мышей, в которых согласно плану (т. е. в соответствующих тканях и органах) функционируют гены вирусов и бактерий, растений, разных видов животных и человека. В результате функционирования перенесенных генов в клетках гипофиза трансгенных мышей синтезируется гормон роста человека, крысы, крупного рогатого скота, в поджелудочной железе синтезируется совершенно нормальный инсулин человека, в клетках крови - гемоглобин кролика и т. д.
Шотландским генетикам (Джону Кларку и др.) из Исследовательского центра разведения животных в совместной работе с французским молекулярным биологом Ричардом Лате удалось получить трансгенных мышей, в молочных железах которых синтезировался белок молока овцы (р-лактоглобулин), т. е. им удалось изменить качество молока. В США известный специалист в области биотехнологии животных Катерина Гордон получила мышей, молочные железы которых продуцируют человеческий активатор плазминогена - ценный медицинский препарат. Сотни разнообразных генов разного происхождения перенесено в мышей, и как правило, эти чужие гены нормально функционировали там, где предусмотрел экспериментатор.

Фев
23

Антинела.

Традиционным способом невозможно получить моноспецифические, или, как говорят, моноклинальные антитела (сокращенно МАТ). Для этого необходимо разделить либо смесь антител, либо В-клетки на отдельные виды. Эта задача была решена в 1975 г. немецкими специалистами Даном Келлером и Досоном Мелстейном, которые разработали метод создания гибридом. Метод основан на слиянии клеток опухоли с В-лимфоцитами и получении клеточных гибридов или гибридом. Опухолевые клетки придают лимфоцитам способность к неограниченному размножению вне организма с сохранением их способности продуцировать и секретировать в культуральную среду антитела. В условиях культивирования гибридом вне организма можно из каждой гибридной клетки получить обособленный клон, производящий антитела одной специфичности - МАТ.

В последнее время разработана процедура получения неспецифических МАТ, основанная на слиянии двух разных гибридов. Гибридная гибридома (фузома) обеспечивает образование одного иммуноглобулина с антигенсвязывающей способностью, характерной для обоих партнеров. Сейчас гибридомы и фузомы широко используют для производства гомогенных антител, специфичных для почти любого антигена.

Новое направление в иммунобиотехнологии - создание искусственных антител, обладателей необычных свойств. Ген тяжелой цепи иммуноглобулина (молекулы антитела) выделяли гибридомы, которая продуцировала иммуноглобулин против химического агента 4-гидрокси-З-нитрофенацетн-ла (ГНФ). У этого гена вариабельная (изменчивая) область (V) соответствует антигену. Затем в константную область (С) гена иммуноглобулина вставляли ген фермента ДНКазы из Staphylococcus aureus. Образующийся рекомбинантный (гибридный) ген кодировал рекомбинантный белок, состоящий из изменяющейся области и части константной области иммуноглобулина, а также ДНКазы. При функционировании этого гена в клетках, продуцирующих легкую цепь иммуноглобулина, происходила самосборка и образовывался рекомбинантный (гибридный) иммуноглобулин, состоящий из легкой и тяжелой цепей (антитело). Это антитело было специфично по отношению к ГНФ и в то же время обладало ДНКазной активностью. Таким образом, можно осуществлять разнообразные комбинации компонентов антител, получать новые их формы, отсутствующие в природе.

Широкое применение МАТ нашли в сфере науки и в медицине для диагностики и лечения заболевании, вызываемых патогенами, прежде всего микроорганизмами и их токсинами. С помощью биосенсоров (см. выше), сконструированных на основе МАТ, диагностируют беременность, выявляют предрасположенность к диабету, ревматоидному артриту, диагностируют наследственные заболевания. Используют МАТ также для диагностики и лечения рака, СПИДа и т. д.

Рынок сбыта биотехнологических продуктов, предназначенных для иммунотерапии, непрерывно растет: в США в 1987 г. его объем равнялся 1,5 млрд. долл., а к 1993 г. ожидается, что он составит 8,6 млрд. долл. Вне медицины мат. широко используют в биологических датчиках (биосенсорах), применяемых для тестирования качества пищевой продукции, для диагностики болезней животных и растений.

Еще одно новое направление в иммунобиотехнологии - получение каталитических антител, абизимов, соединяющих в себе каталитический центр фермента и связывающий центр антитела. Некоторые абизимы уже начинают производиться промышленностью. В качестве примера такого абизима можно привести МАТ к фосфонамидату, которые способны катализировать гидролиз карбоксамида.

Фев
20

Трудности лечения.

Поскольку при СПИДе (по еще неизвестному механизму) поражается и центральная нервная система, которая закрыта от иммунной системы гематоэнцефалическим барьером, вакцина будет неэффективна после того, как вирус поразил эти органы. Кроме того, вакцины на основе убитых вирусов или вирусов с ослабленной инфекционностью, к сожалению, даже в опытных руках иногда могут служить источником инфекции (в США такие случаи были при вакцинации детей против полиомиелита). Более перспективны живые вакцины на основе рекомбинантного вируса осповакцины, созданные по схеме. Важно и то, на какой стадии заболевания используют вакцину. Очевидно, что вакцина против ретровирусов будет малоэффективна после того, как вирусная ДНК уже внедрилась в клетки.

Еще одна трудность лечения СПИДа состоит в том, что интегрированная вирусная ДНК может проявлять себя через длительный период, во время которого в ней могут произойти мутации, а при суперинфекции за счет механизма рекомбинации может в организме сформироваться более вирулентный (болезнетворный) штамм вируса. Сейчас основное направление состоит в попытках создать вакцины на основе белка оболочки ВИЧ. Такая вакцина, как ожидается, должна стимулировать появление антител, которые нейтрализуют вирус и будут также препятствовать взаимодействию вируса с клеткой-мишенью. Препятствием на пути получения такой вакцины является гиперизменчивость структуры белков оболочки ВИЧ. Сейчас ведется поиск консервативных (т. е. медленно изменяющихся) участков этого белка, способных выступать в качестве антигенов. Антитела, выработанные к таким участкам, оставались бы эффективными против вируса даже при гиперизменчивости других участков.

Для предотвращения связывания вируса с клеткой делаются попытки вводить в организм препараты рецептора CD4, который бы блокировал рецептор связывающие места вируса. При помощи методов генной инженерии уже получены препараты растворимого белка CD, В экспериментах вне организма этот препарат блокировал на оболочке ВИЧ участки связывания.

Одно из наиболее распространенных химических средств против СПИДа в настоящее время - азидотимидин (зидовудин), который подавляет процесс обратной транскрипции вирусной РНК. Избирательным антивирусным действием обладает препарат GLQ223, белок, выделенный из корневых клубней китайского огурца Trichosanthus kirillowi.

Блок трансляции вирусных мРНК возможен с помощью антисмысловых олигонуклеотидов. Уже синтезирован ряд таких соединений и показано, что они, связываясь с мРНК, препятствуют ее трансляции на рибосомах, т. е. мешают синтезу вирусных белков. Правильной модификации белков ВИЧ мешает кастаноспермин - растительный алкалоид. Выходу зрелых частиц ВИЧ (вирионов) из клеток препятствует а-интерферон, поэтому в принципе он может блокировать реинфицирование новых клеток.

Несмотря на то что обнаружено несколько агентов против ВИЧ, ни один из них не позволяет пока полностью предотвратить развитие заболевания. Обусловлено это множеством причин: нестабильностью соединений, наличием у них нежелательных побочных эффектов и главное - недостаточной эффективностью и др. В настоящее время исследователи не связывают свои надежды с каким-либо одним лекарственным препаратом. Видимо, необходима разработка разнообразных агентов способных воздействовать на разные этапы жизненного цикла ВИЧ. Но главное - это продолжающийся поиск принципиально новых подходов.