Апр
22

Биотехнологическое получение антибиотиков.

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).

Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.

До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.

Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.

Апр
19

Гормон роста.

В организме он продуцируется клетками передней доли гипофиза. Вес этой доли - меньше одной десятой грамма, и лишь небольшая часть ее клеток занята выработкой гормона роста. Его нехватка в организме снижает темп роста, вызывает карликовость (карликовые мыши весят примерно в 2 раза меньше нормальных). Введением гормона можно нормализовать рост.

В медицине при лечении одного пациента требуется 7 мг в неделю очищенного гормона, который ранее получали из гипофиза человека (трупного материала). Наряду с этим уже налажено микробиологическое производство генно-инженерного гормона, позволяющее получать 100 мг препарата из 1 л культуральной среды. В принципе этим способом можно производить килограммы гормона, причем независимо от природы гормона и клеток, где он производится в норме. Генио-инженерное микробиологическое производство выравнивает (унифицирует) условия наработки всех продуктов, т. е. делает биотехнологию индустриальной. Старьте же способы получения в сильной мере зависят от особенностей ткани и концентрации в ней гормона, требуют иногда переработки огромных масс дорогостоящих тканей. К примеру, для получения 25 - 30 мкг гормона секретина необходимо 1 т кишечника коров.

Список производимых гормонов непрерывно пополняется, и их очередность определяется как практической важностью, так и готовностью науки. Создать необходимые продуценты. К гормонам, производство которых начато или начинается, относятся эритропоэтин (регулятор образования эритроцитов и, следовательно, гемоглобина), энкефалины и эндорфины (гормоны нервной системы, которые применяют для снятия болевых ощущений, улучшения памяти, тонуса, настроения).

Микробные клетки пригодны и для производства некоторых стероидных гормонов. Например, Artbrobacter globiformis используют для синтеза преднизолона из гидрокортизона, Микробиологическая трансформация позволяет резко сократить число этапов химического синтеза гормона надпочечников - кортизона.

Апр
18

Биодеградация и биоконверсия.

Это важнейшие направления биотехнологии, основанные на использовании микроорганизмов. Ведь переработка (биодеградация) отходов и побочных продуктов сельского хозяйства и промышленности решает одновременно производственные и природоохранные задачи. Речь идет о достижении двух целей в едином процессе: утилизации (биодеградации) и превращении ненужного (как правило, экологически вредного) сырья в полезные продукты (биоконверсия).

Яркий пример биотехнологии, основанной на биодеградации в сочетании с биоконверсией - хорошо налаженная в Японии и других странах переработка отходов животноводческих комплексов с помощью синезеленых водорослей. Избавляясь от отходов, одновременно получают биомассу с высоким содержанием белка и биогаза, сильно обогащенный метаном. В Индии в настоящее время действует около 600 тыс. биоустановок по производству биогаза, обеспечивающих основную потребность в нем сельского хозяйства.

Одна из сложнейших проблем - утилизация целлюлозы. Целлюлоза - органическое соединение. На планете ежегодно синтезируется 4 - 1010 т-целлюлозы в результате фотосинтеза, т. е. в ней аккумулирована значительная часть солнечной энергии, поступающей на землю. Мировые ресурсы целлюлозы составляют 7×10 т. Это линейный полимер из мономеров целлобиозы, основу которой составляет глюкоза. Полное расщепление целлюлозы до глюкозы могло бы решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства, бумажной и текстильной промышленности. Расщепить целлюлозу непросто, так как она состоит из нерастворимых волокон, ассоциированных с другими полисахаридами - гемицеллюлозой, пектином, и окружена лигнином, закрывающим целлюлозу от ферментов. Животные не переваривают целлюлозу. В природе ее расщепляют микроорганизмы, например нитчатый гриб - Trichoderma reesei, который продуцирует большое количество целлюлолитических ферментов (целлюлаз), представляющих собой смесь эндоцеллюлаз и экзоцеллюлаз (расщепляют полимер соответственно изнутри цепочки и с концов) и (3-глюкозидазы. Однако деятельность этих и других известных природных микроорганизмов недостаточно эффективна для создания на их основе промышленной биотехнологии расщепления целлюлозы.

В этой кардинальной и масштабной проблеме, как ни в какой другой, требуется помощь генной инженерии. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт. Существует, однако, серьезное опасение, что генно-инженерные микроорганизмы с повышенной целлюлолитической способностью могут распространиться в природе и станут наносить ущерб растительному миру и изделиям из целлюлозы, окружающим человека повсеместно.

Апр
09

Получение гибридных клеток.

Поскольку растительные клетки окружены жесткими целлюлозными оболочками, для их слияния нужно предварительно растворить эту оболочку, сохранив находящуюся под ней нежную белково-липидную плазматическую мембрану. Клетки, лишенные целлюлозной оболочки, называют протопластами. Получают протопласты обработкой клеток смесью ферментов. Затем протопласты с обнажившейся плазматической мембраной сливают, получая гибридные клетки, несущие свойства обеих клеток-партнеров. Этим путем созданы межвидовые гибриды табака, картофеля, капусты с турнепсом. Протопласты используют та we для переноса в них органоидов других клеток - митохондрий, хлоропластов, цитоплазмы.

Приведем наиболее интересные гибриды, полученные в результате слияния клеток. Широкое распространение в США и Англии получил гибридный сорт помидоров, устойчивый к двум вирусам (PLRV и PVY), которые наносят наибольший вред этим растениям. Гибридный сорт создали в результате слияния протопластов дикого вида помидора S. brevidens, устойчивого к PLRV и PVY, и коммерческого помидора S. tuberosum. В Японии создан таким образом сорт помидора, устойчивого к высоким температурам.

Значительный прогресс в этой области произошел и благодаря искусственным ассоциациям растительных клеток с микроорганизмами, особенно с азотфиксирующими бактериями. Проблема придания растениям свойства азотфиксации имеет огромное народнохозяйственное значение, поскольку производство азотных удобрений требует больших затрат, а их использование загрязняет среду. Уже получены положительные результаты благодаря искусственным ассоциациям азотфиксирующей бактерии Anaboena variabilis и табака. Несколько подробнее о проблеме азотфиксации будет сказано ниже.

Несмотря на очевидные успехи клеточной инженерии, наибольший интерес в последнее время вызывают работы по целенаправленному изменению свойств сельскохозяйственных растений с помощью методов генной инженерии - конструирования и переноса генов в растительные клетки и в целые растения, В последние годы с появлением генно-инженерных методов клонирования генов и их переноса в растительные клетки, а затем и в регенерируемые из них растения стало возможным заметно быстрее создавать новые сорта. Это направление, зародившееся лишь в середине 80-х годов, быстро набирает темп. Изолировано множество генов растений и микроорганизмов, кодирующих признаки продуктивности, устойчивости к неблагоприятным факторам. Получено немало растений, содержащих такие гены. Растения, несущие в геноме чужеродные гены, т. с. трансгенные растения, постепенно внедряются в сельскохозяйственную практику, их вклад в производстве сельскохозяйственной продукции быстро растет. Прогнозируется, что рынок биотехнологически улучшенных растений и семян в США составит в 1992 г. 24 млн., долл., а в 1997 г. может достичь 122,5 млн. долл.