Всего за 10 лет (первые трансгенные мыши были получены в 1980 г.) создана уникальная область генно-инженерных животных. Трансгенные мыши всего за одно поколение претерпевают такие целенаправленные изменения, для достижения которых ранее требовалось проводить селекцию на 40 - 50 поколениях. Они способны продуцировать совершенно новые виды белковых продуктов, которые иногда оказывают эффективные воздействия на рост и развитие самих мышей. В результате, переноса дополнительного гена гормона роста (неважно, из какого источника - из другого животного, человека) образуется избыточное количество гормона роста, стимулирующего рост: размеры мыши удваиваются (таких трансгенных мышек называют гигантскими).
Трансгенные мыши стали обычными объектами лабораторных исследований и уже вносят неоценимый вклад в фундаментальные научные исследования. Однако они совершенно не пригодны для целен биотехнологического производства. Начиная с 1985 г. во многих лабораториях пытаются получить трансгенных сельскохозяйственных животных - овец, свиней. За это время удалось преодолеть методические трудности проведения таких работ на сельскохозяйственных животных. Уже получено большое число овец и свиней, содержащих чужеродные гены. Планируется получение ряда важных медицинских препаратов - фактора свертываемости крови, интерферонов и т. д.
Очень хотелось бы воспроизвести на сельскохозяйственных животных продемонстрированный на мышах аффект ускоренного роста. Специалисты считают, что трансгенные сельскохозяйственные животные - это живые биотехнологические фабрики XXI в., которые экологически будут наиболее чистыми производителями ценных белковых препаратов. Сегодня уже создана фундаментальная и методическая база, но требуется еще приспособить эти научно-технические достижения к условиям работы с сельскохозяйственными животными.
Перспективным представляется использование, например, видоизмененных регуляторных белков ВИЧ и которые из них полностью подавляют функционирование нормальных белков и предотвращают этим размножение вируса. Теоретически гены, кодирующие такие мутантные белки, можно вводить в стволовые клетки костного мозга в культуре, а затем трансформированные клетки переносить в костный мозг человека.
Для профилактики СПИДа создают диагностикумы для быстрого и однозначного обнаружения ВИЧ. Эта задача сейчас решена - есть хорошие диагностиками, налажено их массовое производство. Большинство таких диагностикумов основано па выявлении в крови вирусных белков с помощью антител. Но и здесь интенсивно ищут новые подходы. Перспективным считают обнаружение следовых количеств ВИЧ с помощью цепной полимеразной реакции. В результате 20 последовательно проведенных циклов “денатурация - синтез” в течение короткого времени количество анализируемой ДНК в пробе возрастает в миллионы раз, и она легко определяется с помощью реагентов.
Общественное движение за решение проблемы СПИДа только набирает силу (в нашей стране этот процесс идет с большом задержкой). Должно быть полностью осознано что наряду с ядерной опасностью и экологией СПИД стал общемировой проблемой. Необходимость в срочной мобилизации международных ученых привела к созданию глобальной программы по СПИДу, координируемой Всемирной Организацией здравоохранения (ВОЗ). Над созданием вакцин работают лаборатории многих стран, объединенных в специальную программу IIIVAC (от англ. HIV-vaccine) и возглавляемой первооткрывателем ретровирусов человека - Робертом Галло.
Пока же кривая числа зарегистрированных больных и вирусоносителей поднимается все выше: только в США за прошедшие годы больных было в 1987 г 50 тыс. в 1988 г. - 66464 человек, в 1989 г. - 113211. По данным ВОЗ, в 159 странах мира в феврале 1990 г. было зарегистрировано 215 тыс. больных (по неофициальным данным, их в 2 - 2,5 раза больше). Прогнозируется, что их число только в США составит в 1991 г 270 тыс. в 1992 г. - 365 тыс., в 1993 г. - 450 тыс. человек. Число вирусоносителей во всем мире оценивается сейчас от 5 до 10 млн. Ожидается резкий подъем вирусоносительства в ближайшие годы в СССР. Возможно ли, чтобы СПИД устоял против современного мира? Ученые уверены, что он будет побежден, хотя и неясно, когда и какой ценой. Такая оценка сегодняшних возможностей медицины в лечении СПИДа может показаться несправедливой, учитывая, что в популярной печати часто появляются сообщения, которые позволяют предполагать либо о решении проблемы лечения СПИДа, либо о близости такого решения. К сожалению, это заблуждение характерно и для других острых медицинских проблем (например, онкологической) Так недавно в газетах сообщалось об успехе в лечении больных СПИДом, достигнутом благодаря прогреву крови выкаченной из тела больного и затем влитой обратно. Однако в научной медицинской литературе пока нет достоверного описания и обоснования такого метода лечения.
Нельзя не сказать о многочисленных попытках получения растений, устойчивых к вирусам, наносящим огромный урон сельскому хозяйству. Спектр вирусов, инфицирующих сельскохозяйственные растения, велик. Ежегодно только вирус мозаики томата наносит ущерб на 50 млн. долл., а вирусы зерновых - на 1 - 2 млрд. долл. Наиболее перспективным способом зашиты растений от вирусов считают индуцирование у растений “иммунитета” к вирусам методом, сходным с иммунизацией. Например, ген белка оболочки вируса табачной мозаики перенесли в клетки табака и получили трансгенные растения, у которых 0,1% всех белков листьев был представлен вирусным белком. Значительная часть таких растений при инфицировании вирусом не проявляла никаких симптомов заболевания. Молекулярный механизм подавления вирусной инфекции пока неясен, существует несколько предположений. Сейчас планируется этим путем получать вирусорезистентные зерновые культуры.
Проводятся эксперименты по созданию растений, устойчивых к заболеваниям благодаря переносу в них вирусных генов в антисмысловой ориентации (т. е. анти-РНК вируса). Один из подходов повышения устойчивости растений к вирусам, не связанный с генной инженерией, основан на культивировании вирусов табачной и томатной мозаики и вирусов цитрусовых в специальных условиях (обработка азотной кислотой, повышенные температуры), в результате чего они утрачивают патогенность. Такие ослабленные вирусы служат своеобразной вакциной для растений.
Зарождающаяся на наших глазах космическая биотехнология свидетельствует о том, что биотехнология проникает во все сферы производства. Как и другие виды инженерно-технологических работ, биотехнология делает первые шаги в космос, осваивая специфические неземные условия. С самых первых шагов было очевидно, что космос создает для биотехнологических процессов не только большие трудности, но и большие преимущества. Они обусловлены главным образом невесомостью, существенно изменяющей течение физико-химических процессов, на которых основаны многие биотехнологии. Это, прежде всего, относится к производственным процессам электрофоретического или хроматографического разделения белков и других биоматериалов. Невесомость создает следующие условия, важные для этих процессов. 1. Редуцирует конвекции (перенос тепла), вызванные плавучестью, и исключает седиментацию (осаждение под воздействием гравитационных сил). 2. Делает силы поверхностного натяжения больше гравитационных. 3. Обеспечивает протекание процессов без емкостей. В земных условиях температурные различия между жидкостями после их смешения, быстро выравниваются в результате конвекционных перемещений, вызванных плотностными различиями теплых и холодных частей жидкости. В условиях невесомости этого не происходит, что крайне важно для процессов разделения - сохраняется гетерогенность фаз и содержимого жидкостей, что качественно улучшает разрешающую способность методов разделения, повышает выход и чистоту получаемых продуктов.
Другая из упомянутых выше особенностей космических условий состоит в том, что жидкости из-за повышенной (в сравнении с земными условиями) величины поверхностного натяжения и понижения сил гравитации обретают сферические формы, не нуждающиеся в сосудах, емкостях, минимизируется энтропия жидкостей. Это создает благоприятные условия для процессов кристаллизации белков - важного для многих биотехнологий процесса получения высококачественных белковых продуктов и для рентгеноструктурных анализов белков. Почти полное отсутствие гравитации приводит к свободной флотации составных частей в свободной жидкости в отсутствии стенок сосудов, контейнеров, что также важно для технологии разделения. Ведь исключаются возмущающие нормальное течение процесса пристеночные явления, меняющие физико-механические свойства жидкости и “оказывающие воздействие на поведение находящихся в них компонентов. К тому же и сами стойки, какими бы они ни были нейтральными к источниками загрязнений и дополнительных электрических, химических сил, могут избирательно сорбировать вещества.
Для технологии важно наличие всех перечисленных условии. Не обязателен полет в космос, ибо невесомость может быть создана и искусственно. Существует ряд технических способов создания невесомости вне космоса которые на нынешнем этапе научно-технических достижений различаются между собой по продолжительности времени создаваемой невесомости и стоимости. На сегодняшний день для создания продолжительной невесомости лучше всего, естественно, орбитальные средства - пилотируемые и автоматические. К первым относятся космический “Шатл STS” США и советская космическая станция “Мир”. К автоматическим относятся многократно используемые спутники “EURECA” (США) и европейская космическая платформа “LIFESAT”.