Апр
02

Получение и использовании ферментов.

Ферменты (энзимы) - белки, выполняющие функции биокатализаторов многочисленных химических (биохимических) реакций. Поскольку биотехнология основана на промышленном использовании биопроцессов, которые в значительной мере обеспечиваются ферментами, по существу, ни одна биотехнология не обходится без них. Ферментные системы микроорганизмов (бактерий, дрожжей) были первыми в истории человечества орудиями биотехнологий, на которых основано виноделие, пивоварение, переработка молока и т. д. Рассмотрим лишь 2 наиболее показательных примера состояния этих технологий в эпоху генной инженерии.

Пивоварение - старейшая биотехнологическая индустрия, базирующаяся на жизнедеятельности дрожжей, прежде всего Saccharomyces curevisiae, которые за последнее десятилетие стали одним из наиболее широко используемых генно-инженерных объектов, позволяющих создавать множество новых ценных штаммов. Так, исходные штаммы S. cerevisiae не способны переваривать декстрины, составляющие 20% полисахаридов ячменя, тогда как S. diastalicus содержит фермент амило-1,4глюкозидазу, расщепляющую декстрины (но эти дрожжи производят пиво худшего качества). Ген, кодирующий названный фермент, был изолирован из S. diaslaticus, перенесен и S. cerevisiae, и проблема была решена - получаемое с помощью генно-инженерного штамма пиво содержит очень мало сахаров, больше этанола и имеет улучшенные вкусовые качества.

Другая генно-инженерная операция - перенос а дрожжи из нитчатого гриба Aspergillus awamori гена, кодирующего гликоамидазу, которая расщепляет разветвленные высокомолекулярные полисахариды. Однако этот фермент очень устойчив в пиве и со временем все полисахариды превращаются в глюкозу, а пиво по мере хранения становится сладким. Чтобы устранить этот недостаток, ген перед переносом подвергли химической модификации, которая придала ферменту свойство разрушаться после завершения процесса брожения.

Поприщем генной инженерии стала и такая древняя биотехнология, как сыроварение, В технологии получения сыра ключевая роль принадлежит сычужному ферменту химозину, створаживающему молоко в желудке теленка. Потребность в химозине очень велика и далеко не удовлетворяется природным источником. Ген, кодирующий химозин, был проклонирован из геномной библиотеки коров и перенесен в дрожжи, которые после этого стали продуцентами ценного фермента.

Еще одна проблема в сыроварении - экономная утилизация сыворотку содержащей много ценных продуктов, в частности лактозу. Путем переноса в дрожжи генов (5-галактозидазы и лактозной пермеазы из бактерий получен штамм, который способен расти на сыворотке и производить спирт и биомассу, добавляемую к животным кормам.

Март
30

Биоэнэрготехнология.

Запасы энергии в растительном покрове Земли, создаваемой с помощью фотосинтеза, сопоставимы с запасами энергии природных ископаемых. Обычно сухую биомассу превращают в энергию в процессе сгорания, тогда как наиболее эффективный способ превращения с помощью микроорганизмов сырой биомассы в энергию - получение углеводородов биогаза (метана).

Метановое брожение было открыто еще в конце XVIII в. Это сложный процесс, в котором участвует несколько видов микроорганизмов (превалируют Methanobacterium formicicum и М. hungati). Биогаз, образующийся В результате такого брожения, представляет собой смесь, главные компоненты которой метан (65%), углекислый газ (30%) и сероводород (1%).

Для получения биогаза используют смеси органических веществ (навоз, солому, помет, водоросли, целлюлозную биомассу), что требует для метанообразования многокомпонентных микробных ассоциаций. Биогаз давно производят в Китае, Индии, на Филиппинах. Сейчас интерес к этому виду топлива проявляют и в некоторых странах Западной Европы (в частности, во Франции). Метан важен не только для производства биоэнергии. Его получение - эффективный способ утилизации отходов сельского хозяйства.

Экологически чистое топливо - этанол. В последние годы его начинают использовать в двигателях внутреннего сгорания. Наиболее пригодны для производства этанола злаки (особенно кукуруза), картошка, маниок, земляная груша, сахарная свекла, сахарный тростник. У двух последних основной запасной углевод - сахароза, у остальных - крахмал. Сахарозу и крахмал обычно сбраживают с помощью дрожжей Saccharomyces cerevisiae. В последнее время спектр используемых для этого микроорганизмов значительно расширился. Обращено, например, внимание на бактерию Zymomonas mobilis, способную сбраживать сок агавы. Она эффективнее сбраживает сахара и устойчивее к этанолу (конечному продукту), чем дрожжи. В настоящее время ведутся работы по генно-инженерному изменению этой бактерии с целью расширения круга утилизируемых ею субстратов. Перспективными для биоконверсии полисахаридных субстратов в этанол считаются некоторые термофильные бактерии. Так, Clostridium tlicrmohydrosulfuricum утилизирует с очень высоким выходом этанола продукты деградации целлюлозы.

Для повышения выхода продукта и стабилизации активности бактерий производят иммобилизацию их на разных носителях. Согласно прогнозам этанол, получаемый ферментацией углеводородсодержащих субстратов, к 2000 г. будет стоить дешевле, чем спирт, производимый по традиционной химической технологии.

Благодаря поиску микроорганизмов, содержащих углеводороды, которые можно использовать в качестве заменителей нефти, обнаружены некоторые микроводоросли (Bolhryacoceus, Isochrysis и др.), содержащие эти соединения в количестве от 15 до 80% сухой массы клеток. Наилучший состав углеводородов присущ В. braunii, что позволяет использовать ее в качестве источника энергии.

Март
26

Производство пищевых белков и аминокислот.

Уже давно микроорганизмы используют как источник белка для питания человека и животных. Еще в годы первой мировой войны один из основоположников молекулярной биологии Макс Дельбрюк с коллегами в Германии (в 1937 г. переехал в США) разработали первый технологический процесс промышленного культивирования пивных дрожжей для их добавления в супы и колбасы. Белки, продуцируемые бактериями или дрожжами и используемые в пищевых целях, получили название белки одноклеточных организмов (БОО).

На первом этапе в качестве сырья для микроорганизмов использовали в основном углеводороды нефти. Затем интерес был проявлен к другим субстратам, прежде всего к природным газам (метан). Как субстраты для получения БОО из дрожжей используют некоторые промышленные отходы (например, отработанный сульфитный щелок с бумажных комбинатов, молочную сыворотку - побочный продукт сыроварения, мелассу (патока), отходы спиртоводочных заводов). Промышленный продукт получают в виде суммарной биомассы. Разработаны промышленные линии для производства и переработки микроводорослей с целью получения БОО. Объем дрожжевой биомассы, полученной в мире в 1985 г., превысил 1 млн. т. Ожидается, что в 1990 г. этот объем возрастет более чем в 2 раза.

Производство БОО имеет многие преимущества перед производством белка в животноводстве и растениеводстве: 500 кг дрожжей дают за сутки 80 кг белков, а у быка того же веса суточный привес составляет в лучшем случае 500 г белка. Однако БОО используют в основном как корм для скота, и лишь в будущем можно ожидать создания технологий получения БОО, пригодных для питания человека. Перспективно в этом отношении культивирование некоторых грибов (Fusarium), зеленых водорослей (Chlorella), цианобактерий (Spirulina), имеющих адекватные для человека органолептические свойства. В настоящее время уже налажено производство на базе крахмала волокнистой массы Fusarium как источника пищи для человека.

Изменения в генах, осуществленные с помощью генной инженерии, могут модифицировать структуру и улучшать свойства пищевых белков. Наибольший интерес в плане таких манипуляций привлекают к себе 3 белка животных и растений: овальбумин курицы, составляющий большую часть (54%) белка яйца, казеины (главная фракция в молоке) и белки сои (42% в бобах). Например, манипуляции с кодирующей частью гена k-казеина, в результате которых из белка элиминировался фрагмент, расположенный между 9-й и 17-й аминокислотами, а также” цистеин, участвующий в образовании дисульфидной связи, привели к тому, что новый белок как пищевой продукт стал более качественным.

Фев
23

Будущее биотехнологии.

По имеющимся в литературе оценкам, к 2000 г. белки с измененными свойствами, полученные целенаправленной модификацией структуры кодирующих их генов, будут составлять примерно 4% всех потребляемых белков на общую сумму 15 млрд. долл. Общее же количество пищевых продуктов, получаемых с помощью биотехнологии, к концу XX п. увеличится, по расчетам специалистов, по крайней мере, в 10 раз.

На использовании микроорганизмов основано производство ими аминокислот, в первую очередь так называемых незаменимых, которые могут быть полезными добавками в пищу животных и человека. Среди незаменимых аминокислот, промышленное производство которых уже давно налажено, первое место занимает лизин, затем треонин и глутаминовая кислота. Получены штаммы Brevibacterium flavum, которые превращают в лизин более одной трети сахаров, содержащихся в питательной среде.

В СССР во ВНИИ генетики и селекции промышленных микроорганизмов с помощью генно-инженерных методов сконструированы высокопродуктивные штаммы Е. coli продуценты L-треонина, L-лизина и L-триптофана, которые используются и промышленности.

Интерес к микробиологическим способам промышленного производства аминокислот вызван также и тем, что они позволяют получать L-аминокислоты в чистом виде, тогда как при химическом синтезе получают рацемические смеси, содержащие L- и D-аминокислоты. Последние не входят в состав природных белков (они содержатся в незначительных количествах лишь в некоторых пептидах микроорганизмов, в частности пептидах, являющихся антибиотиками).

Производство витаминов. Напомним, что витамины - это низкомолекулярные органические соединения, роль которых для нормальной жизнедеятельности организма хорошо известна. Поскольку в пищевых продуктах витаминов содержится немного (10 - 100 мг на 100 г съедобной части продукта) и они быстро разрушаются, требуется витаминизация готовой пищи и продуктов. Поэтому уже давно витамины производят в больших количествах. Традиционные способы получения витаминов основаны либо на переработке больших количеств ценного сырья, либо (в редких случаях) на химическом синтезе. Поэтому витаминная промышленность нуждается в более эффективных технологиях. Такие технологии успешно создаются.

С помощью лишь генетических манипуляций (воздействием на регуляцию метаболизма) были получены штаммы микроорганизмов, которые производят в десятки тысяч раз больше витаминов, чем необходимо для их роста. Это - штамм Ashbya gossypii - продуцент рибофлавина, штаммы Pseuclomonas dеnitrificans и Propioribacterium freudenrcechii, производящие витамин В2 и др. В СССР на базе Bacillus subtilis сконструирован эффективный продуцент витамина B2.

Микробиологические технологии позволили решить и задачу производства аскорбиновой кислоты (витамин С). В Японии разработан эффективный ферментативный способ получения стабильного производного витамина С - аскорбил-2-фосфата, который используют в качестве антиоксиданта.

Помимо широкого применения в медицине в качест-пе профилактических и лечебных средств, получаемые микробиологическим путем витамины В2 и В2 добавляют в пищу животным для сбалансирования кормов.