Март
02

Появление СПИДа.

Как и откуда мог появиться ВИЧ? СПИД озадачил и ученых, и медиков-практиков тем, что это страшное заболевание появилось вдруг, как пришелец из космоса. Первые 3 года, когда еще не было ничего известно о природе патогена, ситуация была крайне шокирующей. Когда стало известно, что возбудитель заболевания вирус из класса ретровирусов, проблема несколько прояснилась, но облегчения не наступило. Во-первых, специалисты хорошо знают, насколько сложно иметь дело с ретровирусами, особенно с теми, которые внедряются в клетки иммунной системы. Во-вторых, ретровирусы, способные передаваться от человека к человеку, до самого последнего времени не были известны. Все это не могло не вызвать широкого общественного интереса к вопросу о происхождении возбудителя СПИДа, чем немедленно воспользовались журналисты - любители сенсации. Несколько лет на страницах газет муссировалась версия о том, что ВИЧ был сконструирован с помощью генно-инженерных методов и при испытании на обезьянах “сбежал”.

В принципе современные генно-инженерные онковирусологические лаборатории конструируют рекомбинантные ретровирусы. Поэтому такая версия исходила из реальной возможности. Однако доказательств, что это имело место, не было никаких. В то же время существует более правдоподобная версия о природном происхождении вируса, поскольку совсем недавно были открыты другие ретровирусы человека и животных, очень похожие на ВИЧ. В природе рекомбинационные процессы среди вирусов - нормальное явление и идут непрерывно, порождая новые формы вирусов. ВИЧ, безусловно, возник именно в результате этих процессов, хотя до сих пор наука не знает, как и когда это произошло (впрочем, столь же мало известно о происхождении других вирусов).

ВИЧ относится к ретровирусам - особому и специфическому классу РНК-содержащих вирусов, способных проникать в хромосомный аппарат клеток и находиться там сколь угодно долго. Название “ретровирусы” присвоили этому классу вирусов после того, как в 1970 г. было сделано одно из крупнейших в молекулярной биологии открытий, показавшее существование у этих вирусов фермента, который направляет поток наследственной информации в обратную сторону от РНК к ДНК.

Фев
28

Вирусоустойчивость.

Нельзя не сказать о многочисленных попытках получения растений, устойчивых к вирусам, наносящим огромный урон сельскому хозяйству. Спектр вирусов, инфицирующих сельскохозяйственные растения, велик. Ежегодно только вирус мозаики томата наносит ущерб на 50 млн. долл., а вирусы зерновых - на 1 - 2 млрд. долл. Наиболее перспективным способом зашиты растений от вирусов считают индуцирование у растений “иммунитета” к вирусам методом, сходным с иммунизацией. Например, ген белка оболочки вируса табачной мозаики перенесли в клетки табака и получили трансгенные растения, у которых 0,1% всех белков листьев был представлен вирусным белком. Значительная часть таких растений при инфицировании вирусом не проявляла никаких симптомов заболевания. Молекулярный механизм подавления вирусной инфекции пока неясен, существует несколько предположений. Сейчас планируется этим путем получать вирусорезистентные зерновые культуры.

Проводятся эксперименты по созданию растений, устойчивых к заболеваниям благодаря переносу в них вирусных генов в антисмысловой ориентации (т. е. анти-РНК вируса). Один из подходов повышения устойчивости растений к вирусам, не связанный с генной инженерией, основан на культивировании вирусов табачной и томатной мозаики и вирусов цитрусовых в специальных условиях (обработка азотной кислотой, повышенные температуры), в результате чего они утрачивают патогенность. Такие ослабленные вирусы служат своеобразной вакциной для растений.

Фев
23

Антинела.

Традиционным способом невозможно получить моноспецифические, или, как говорят, моноклинальные антитела (сокращенно МАТ). Для этого необходимо разделить либо смесь антител, либо В-клетки на отдельные виды. Эта задача была решена в 1975 г. немецкими специалистами Даном Келлером и Досоном Мелстейном, которые разработали метод создания гибридом. Метод основан на слиянии клеток опухоли с В-лимфоцитами и получении клеточных гибридов или гибридом. Опухолевые клетки придают лимфоцитам способность к неограниченному размножению вне организма с сохранением их способности продуцировать и секретировать в культуральную среду антитела. В условиях культивирования гибридом вне организма можно из каждой гибридной клетки получить обособленный клон, производящий антитела одной специфичности - МАТ.

В последнее время разработана процедура получения неспецифических МАТ, основанная на слиянии двух разных гибридов. Гибридная гибридома (фузома) обеспечивает образование одного иммуноглобулина с антигенсвязывающей способностью, характерной для обоих партнеров. Сейчас гибридомы и фузомы широко используют для производства гомогенных антител, специфичных для почти любого антигена.

Новое направление в иммунобиотехнологии - создание искусственных антител, обладателей необычных свойств. Ген тяжелой цепи иммуноглобулина (молекулы антитела) выделяли гибридомы, которая продуцировала иммуноглобулин против химического агента 4-гидрокси-З-нитрофенацетн-ла (ГНФ). У этого гена вариабельная (изменчивая) область (V) соответствует антигену. Затем в константную область (С) гена иммуноглобулина вставляли ген фермента ДНКазы из Staphylococcus aureus. Образующийся рекомбинантный (гибридный) ген кодировал рекомбинантный белок, состоящий из изменяющейся области и части константной области иммуноглобулина, а также ДНКазы. При функционировании этого гена в клетках, продуцирующих легкую цепь иммуноглобулина, происходила самосборка и образовывался рекомбинантный (гибридный) иммуноглобулин, состоящий из легкой и тяжелой цепей (антитело). Это антитело было специфично по отношению к ГНФ и в то же время обладало ДНКазной активностью. Таким образом, можно осуществлять разнообразные комбинации компонентов антител, получать новые их формы, отсутствующие в природе.

Широкое применение МАТ нашли в сфере науки и в медицине для диагностики и лечения заболевании, вызываемых патогенами, прежде всего микроорганизмами и их токсинами. С помощью биосенсоров (см. выше), сконструированных на основе МАТ, диагностируют беременность, выявляют предрасположенность к диабету, ревматоидному артриту, диагностируют наследственные заболевания. Используют МАТ также для диагностики и лечения рака, СПИДа и т. д.

Рынок сбыта биотехнологических продуктов, предназначенных для иммунотерапии, непрерывно растет: в США в 1987 г. его объем равнялся 1,5 млрд. долл., а к 1993 г. ожидается, что он составит 8,6 млрд. долл. Вне медицины мат. широко используют в биологических датчиках (биосенсорах), применяемых для тестирования качества пищевой продукции, для диагностики болезней животных и растений.

Еще одно новое направление в иммунобиотехнологии - получение каталитических антител, абизимов, соединяющих в себе каталитический центр фермента и связывающий центр антитела. Некоторые абизимы уже начинают производиться промышленностью. В качестве примера такого абизима можно привести МАТ к фосфонамидату, которые способны катализировать гидролиз карбоксамида.