Май
08

Генно-инженерное получение микроорганизмов-продуцентов.

В середине 70-х годов возникла новая экспериментальная технология - генетическая (или генная) инженерия, которая основана на конструировании рекомбинантной ДНК вне клетки (in vitro) и ее размножении в клетках микроорганизмов. В результате использования этой технологии стало возможным выделять индивидуальные гены, модифицировать, соединять друг с другом, получая “слитые гены”, продуцирующие белки с совершенно новыми свойствами (белковая инженерия).

Типичная схема получения и размножения (амплификации) индивидуального фрагмента ДНК (гена) приведена на рис. 2. В качестве векторов, т. е. молекул-носителей, в которых происходит размножение генов, используют плазмиды, бактериофаги и вирусы, способные размножаться в бактериальных клетках. После соединения (лигирования) вектора с фрагментом ДНК, несущим ген, образуется рекомбинантная ДНК. Затем вектор с геном вводят в клетки микроорганизмов (трансформация), где они амплифицируются. В результате получается множество копий одного гена - клон. Поэтому такой способ получения индивидуального гена называют клонированием.

Если для клонирования использовать ДНК человека, содержащую все его гены, они окажутся в разных клонах будет получена генная библиотека (клонотека) человека. Гены животных, человека и растений, клонируемые таким путем в бактериях (как правило, используют Е. coli), не функционируют в них. Для этого их нужно выделить из бактерии, снабдить регулятором бактериального гена и вновь ввести в бактерию. Получены и используются многие штаммы бактерий, в которых функционируют гены разного происхождения, производящие нужные продукты.

Этот арсенал новых, генно-инженерных, штаммов-продуцентов позволил наряду с продуктами природных штаммов (их называют биопродуктами первого поколения) начать производство на базе генно-инженерных штаммов рекомбинантные белки - биопродукцию второго поколения. Биопродукцией третьего поколения будут искусственно синтезированные соединения, полностью имитирующие биологические функции природных белков, но не являющиеся ими.

Генно-инженерные методы (технология рекомбинантных ДНК) все шире используют в биотехнологическом производстве прежде всего ценных для медицины белков, в том числе таких, которые трудно синтезировать химическими методами пли получить в нужных количествах из биологического материала. Это в первую очередь белки и пептиды (белковые молекулы, состоящие из небольшого числа аминокислот), которые синтезируются в организме человека и используются как медикаменты. Усилия генных инженеров направлены на создание бактерий-продуцентов, которые бы с высокой эффективностью производили такие биологически активные продукты. Основные трудности здесь заключаются не столько в конструировании продуцентов, сколько в том, чтобы синтезирующиеся в них чужеродные белки нормально формировались, модифицировались и не разрушались в клетках микроорганизмов.

Май
05

Введение.

Ученые полагают, что дальнейший прогресс человечества не только будет во многом зависеть от развития биотехнологии, но просто не сможет без нее обойтись, ибо иначе не удастся прокормить все растущее население Земли. Рассказывается о том, как на основе методов биотехнологии организуют производство медицинских препаратов, некоторых продуктов питания и кормов для животных.

При раскопках Вавилона была обнаружена дощечка, относящаяся к VI тысячелетию до н. э., на которой описан процесс приготовления пива. Это, вероятно, одно из древнейших письменных упоминаний о целенаправленном применении человеком в практике естественного биологического процесса. С древних времен известно использование и других биотехнологических процессов в различных сферах практической деятельности человека: в виноделии, хлебопечении, сбраживании молочных продуктов и т. д. Однако научный анализ биохимических механизмов, лежащих в основе этих биотехнологических процессов, был проведен лишь в XIX в. Луи Пастером.

Термин “биотехнология” впервые использовал венгр Карл Эреки в 1919 г. для обозначения работ, в которых продукты получают с помощью живых организмов. В Биологическом энциклопедическом словаре, изданном в 1986 г., биотехнологией называют использование живых организмов и биологических процессов в производстве. Европейская федерация биотехнологии (EFB) определяет современную биотехнологию как использование наук о природе (биологии, химии, физики) и инженерных наук (например, электроники) применительно к биосистемам в биоиндустрии, а Европейская комиссия (ЕС) дополняет - для того, чтобы снабдить биологическое сообщество требуемыми продуктами и услугами. Будучи древней сферой производства, биотехнология сегодня представляет собой ультрасовременный этап научно-технического прогресса.

На начальном этапе биотехнология опиралась главным образом на достижения микробиологов и энзимологов, а в последние 10 - 15 лет она получила мощный импульс к развитию со стороны наиболее интенсивно развивающихся областей биологии: вирусологии, молекулярной и клеточной биологии, молекулярной генетики.

Апр
24

Методы в космосе.

Два вида разделения биоматериалов испытывается в космических условиях: электрофорез и термодинамическое фазовое разделение. Как уже говорилось выше, в земных условиях в результате конвекции разделяемые вещества вновь перемешиваются. Конвекции возникают из-за того, что выделяемое электричеством тепло создает различия в жидкости, которые в условиях гравитации порождают конвекции. В условиях невесомости перемещение тепла минимизировано, что позволяет повысить напряжение электрического поля и тем самым - скорость процесса электрофоретического разделения.

За рубежом первые электрофоретические системы были использованы на борту “Аполлон-14″ в 1971 г., затем “Аполлон-16″ и “Союз-Аполлон”. Эффективность процесса разделения в невесомости была в сотни раз выше, чем в земных условиях, а качество разделения было лучше примерно в 4 раза. С помощью электрофореза в космических условиях был получен ценный медицинский препарат эритропоэтин - гормон, стимулирующий образование красных кровяных телец. Электрофоретическое разделение белков, в частности интерферона, проводится и на советских спутниках.

Очень хороший метод разделения биологических материалов основан на использовании несмешиваемых жидкостей (двухфазных систем), стремящихся обособиться по термодинамическому закону, по которому система должна минимизировать свободную энергию. В земных условиях этот метод крайне мало эффективен из-за того, что конвекция и седиментация смешивают разделяемые вещества с большей эффективностью, чем система их разделяет. В условиях невесомости метод показывает очень хорошие результаты. В настоящее время этот подход совершенствуется путем сочетания с электрическим полем.

Апр
19

Микроорганизмы в биотехнологическом производстве.

Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40-х годах, когда наладили производство пенпциллинов методами ферментации. В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов, липидов, нуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.

К многообразному миру микроорганизмов относятся прокариоты (одноклеточные организмы, не содержащие оформленных ядер) - бактерии, актиномицеты, риккетсии и низшие эукариоты (одноклеточные и многоклеточные организмы, имеющие сформированные ядра, в которых хромосомы окружены специальной пористой мембраной (липопротеидной природы), - дрожжи, нитчатые грибы, простейшие и водоросли. Из более 100 тыс. видов известных в природе микроорганизмов в биотехнологических процессах используют всего несколько сотен. Микробиологическая промышленность предъявляет к продуцентам жесткие требования, которые важны для технологии производства: высокая скорость роста, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению посторонней микрофлорой.