Март
26

Производство пищевых белков и аминокислот.

Уже давно микроорганизмы используют как источник белка для питания человека и животных. Еще в годы первой мировой войны один из основоположников молекулярной биологии Макс Дельбрюк с коллегами в Германии (в 1937 г. переехал в США) разработали первый технологический процесс промышленного культивирования пивных дрожжей для их добавления в супы и колбасы. Белки, продуцируемые бактериями или дрожжами и используемые в пищевых целях, получили название белки одноклеточных организмов (БОО).

На первом этапе в качестве сырья для микроорганизмов использовали в основном углеводороды нефти. Затем интерес был проявлен к другим субстратам, прежде всего к природным газам (метан). Как субстраты для получения БОО из дрожжей используют некоторые промышленные отходы (например, отработанный сульфитный щелок с бумажных комбинатов, молочную сыворотку - побочный продукт сыроварения, мелассу (патока), отходы спиртоводочных заводов). Промышленный продукт получают в виде суммарной биомассы. Разработаны промышленные линии для производства и переработки микроводорослей с целью получения БОО. Объем дрожжевой биомассы, полученной в мире в 1985 г., превысил 1 млн. т. Ожидается, что в 1990 г. этот объем возрастет более чем в 2 раза.

Производство БОО имеет многие преимущества перед производством белка в животноводстве и растениеводстве: 500 кг дрожжей дают за сутки 80 кг белков, а у быка того же веса суточный привес составляет в лучшем случае 500 г белка. Однако БОО используют в основном как корм для скота, и лишь в будущем можно ожидать создания технологий получения БОО, пригодных для питания человека. Перспективно в этом отношении культивирование некоторых грибов (Fusarium), зеленых водорослей (Chlorella), цианобактерий (Spirulina), имеющих адекватные для человека органолептические свойства. В настоящее время уже налажено производство на базе крахмала волокнистой массы Fusarium как источника пищи для человека.

Изменения в генах, осуществленные с помощью генной инженерии, могут модифицировать структуру и улучшать свойства пищевых белков. Наибольший интерес в плане таких манипуляций привлекают к себе 3 белка животных и растений: овальбумин курицы, составляющий большую часть (54%) белка яйца, казеины (главная фракция в молоке) и белки сои (42% в бобах). Например, манипуляции с кодирующей частью гена k-казеина, в результате которых из белка элиминировался фрагмент, расположенный между 9-й и 17-й аминокислотами, а также” цистеин, участвующий в образовании дисульфидной связи, привели к тому, что новый белок как пищевой продукт стал более качественным.

Март
22

Очищение и биодеградация.

Аэробные и анаэробные микроорганизмы уже давно и широко очищают воды от органических материалов. В бактериях рода Pseudomonas имеются оксиредуктазы, или гидроксилазы, способные разлагать углеводороды и высокотоксичные для окружающей среды ароматические вещества (бензол, толуол, ксилол). Гены, кодирующие в бактериях эти ферменты, локализованы в плазмидах. С помощью генной инженерии и генетических методов получен штамм Pseudomonas putida, который способен расти на неочищенной нефти и весьма эффективно очищать от нее сточные воды. Очистка сточных вод от металлов часто основана на поглощении их микроорганизмами. Так, на практике используют нитчатые грибы, которые способны в больших количествах поглощать торий.

Биодеградация - один из способов удаления пестицидов, способных длительное время сохраняться в почве. С помощью методов генной инженерии сконструирован штамм Pseudomonas ceparia, эффективно разрушающий 2, 4, 5-трихлорфеноксиацетат.

В настоящее время микробная биодеградация и биоконверсия служат основой для создания многих безотходных экологически чистых производств в сельском хозяйстве и промышленности. Все большее распространение получают биотехнологические цепочки, в которых отходы и побочные продукты одного биотехнологического процесса используются в качестве сырья для другого. Так, на гидролизатах растительного сырья выращивают дрожжи, а фильтрат культуральной жидкости используют для синтеза грибного белка. О некоторых других биотехнологиях, основанных на биодеградации и биоконверсии, мы расскажем в последующих двух разделах.

Фев
23

Будущее биотехнологии.

По имеющимся в литературе оценкам, к 2000 г. белки с измененными свойствами, полученные целенаправленной модификацией структуры кодирующих их генов, будут составлять примерно 4% всех потребляемых белков на общую сумму 15 млрд. долл. Общее же количество пищевых продуктов, получаемых с помощью биотехнологии, к концу XX п. увеличится, по расчетам специалистов, по крайней мере, в 10 раз.

На использовании микроорганизмов основано производство ими аминокислот, в первую очередь так называемых незаменимых, которые могут быть полезными добавками в пищу животных и человека. Среди незаменимых аминокислот, промышленное производство которых уже давно налажено, первое место занимает лизин, затем треонин и глутаминовая кислота. Получены штаммы Brevibacterium flavum, которые превращают в лизин более одной трети сахаров, содержащихся в питательной среде.

В СССР во ВНИИ генетики и селекции промышленных микроорганизмов с помощью генно-инженерных методов сконструированы высокопродуктивные штаммы Е. coli продуценты L-треонина, L-лизина и L-триптофана, которые используются и промышленности.

Интерес к микробиологическим способам промышленного производства аминокислот вызван также и тем, что они позволяют получать L-аминокислоты в чистом виде, тогда как при химическом синтезе получают рацемические смеси, содержащие L- и D-аминокислоты. Последние не входят в состав природных белков (они содержатся в незначительных количествах лишь в некоторых пептидах микроорганизмов, в частности пептидах, являющихся антибиотиками).

Производство витаминов. Напомним, что витамины - это низкомолекулярные органические соединения, роль которых для нормальной жизнедеятельности организма хорошо известна. Поскольку в пищевых продуктах витаминов содержится немного (10 - 100 мг на 100 г съедобной части продукта) и они быстро разрушаются, требуется витаминизация готовой пищи и продуктов. Поэтому уже давно витамины производят в больших количествах. Традиционные способы получения витаминов основаны либо на переработке больших количеств ценного сырья, либо (в редких случаях) на химическом синтезе. Поэтому витаминная промышленность нуждается в более эффективных технологиях. Такие технологии успешно создаются.

С помощью лишь генетических манипуляций (воздействием на регуляцию метаболизма) были получены штаммы микроорганизмов, которые производят в десятки тысяч раз больше витаминов, чем необходимо для их роста. Это - штамм Ashbya gossypii - продуцент рибофлавина, штаммы Pseuclomonas dеnitrificans и Propioribacterium freudenrcechii, производящие витамин В2 и др. В СССР на базе Bacillus subtilis сконструирован эффективный продуцент витамина B2.

Микробиологические технологии позволили решить и задачу производства аскорбиновой кислоты (витамин С). В Японии разработан эффективный ферментативный способ получения стабильного производного витамина С - аскорбил-2-фосфата, который используют в качестве антиоксиданта.

Помимо широкого применения в медицине в качест-пе профилактических и лечебных средств, получаемые микробиологическим путем витамины В2 и В2 добавляют в пищу животным для сбалансирования кормов.

Фев
23

Антинела.

Традиционным способом невозможно получить моноспецифические, или, как говорят, моноклинальные антитела (сокращенно МАТ). Для этого необходимо разделить либо смесь антител, либо В-клетки на отдельные виды. Эта задача была решена в 1975 г. немецкими специалистами Даном Келлером и Досоном Мелстейном, которые разработали метод создания гибридом. Метод основан на слиянии клеток опухоли с В-лимфоцитами и получении клеточных гибридов или гибридом. Опухолевые клетки придают лимфоцитам способность к неограниченному размножению вне организма с сохранением их способности продуцировать и секретировать в культуральную среду антитела. В условиях культивирования гибридом вне организма можно из каждой гибридной клетки получить обособленный клон, производящий антитела одной специфичности - МАТ.

В последнее время разработана процедура получения неспецифических МАТ, основанная на слиянии двух разных гибридов. Гибридная гибридома (фузома) обеспечивает образование одного иммуноглобулина с антигенсвязывающей способностью, характерной для обоих партнеров. Сейчас гибридомы и фузомы широко используют для производства гомогенных антител, специфичных для почти любого антигена.

Новое направление в иммунобиотехнологии - создание искусственных антител, обладателей необычных свойств. Ген тяжелой цепи иммуноглобулина (молекулы антитела) выделяли гибридомы, которая продуцировала иммуноглобулин против химического агента 4-гидрокси-З-нитрофенацетн-ла (ГНФ). У этого гена вариабельная (изменчивая) область (V) соответствует антигену. Затем в константную область (С) гена иммуноглобулина вставляли ген фермента ДНКазы из Staphylococcus aureus. Образующийся рекомбинантный (гибридный) ген кодировал рекомбинантный белок, состоящий из изменяющейся области и части константной области иммуноглобулина, а также ДНКазы. При функционировании этого гена в клетках, продуцирующих легкую цепь иммуноглобулина, происходила самосборка и образовывался рекомбинантный (гибридный) иммуноглобулин, состоящий из легкой и тяжелой цепей (антитело). Это антитело было специфично по отношению к ГНФ и в то же время обладало ДНКазной активностью. Таким образом, можно осуществлять разнообразные комбинации компонентов антител, получать новые их формы, отсутствующие в природе.

Широкое применение МАТ нашли в сфере науки и в медицине для диагностики и лечения заболевании, вызываемых патогенами, прежде всего микроорганизмами и их токсинами. С помощью биосенсоров (см. выше), сконструированных на основе МАТ, диагностируют беременность, выявляют предрасположенность к диабету, ревматоидному артриту, диагностируют наследственные заболевания. Используют МАТ также для диагностики и лечения рака, СПИДа и т. д.

Рынок сбыта биотехнологических продуктов, предназначенных для иммунотерапии, непрерывно растет: в США в 1987 г. его объем равнялся 1,5 млрд. долл., а к 1993 г. ожидается, что он составит 8,6 млрд. долл. Вне медицины мат. широко используют в биологических датчиках (биосенсорах), применяемых для тестирования качества пищевой продукции, для диагностики болезней животных и растений.

Еще одно новое направление в иммунобиотехнологии - получение каталитических антител, абизимов, соединяющих в себе каталитический центр фермента и связывающий центр антитела. Некоторые абизимы уже начинают производиться промышленностью. В качестве примера такого абизима можно привести МАТ к фосфонамидату, которые способны катализировать гидролиз карбоксамида.