Май
10

Биотехнология на основе клеток животных.

В последние годы значительные успехи достигнуты в биотехнологических работах, проводимых с использованием клеток животных. Уже длительное время применяют технику гибридизации животных клеток разного происхождения, а также перенос чужеродных генов в культивируемые клетки.

В середине 70-х годов вирусолог Рудольф Ениш (ФРГ) провел первый успешный эксперимент по переносу чужеродного гена в геном целого животного организма (мыши). В качестве переносчика гена (вектора) использовали вирус лейкоза мышей. В дальнейшем были отработаны различные варианты переноса генов в животных (трансгенные животные), включая прямую микроинъекцию в пронуклеус зиготы. Подобные эксперименты оказали решающее воздействие на вовлечение клеток животных в биотехнологию. Существенно то, что только на базе клеток животных можно получать такие важные для медицины биотехнологические продукты, как антитела и вакцины. Использование клеток животных для продуцирования других биологически активных продуктов пока, как правило, экономически менее выгодно, чем на базе микроорганизмов. Однако получить некоторые полноценные белки можно только из клеток животных.

Май
08

Генно-инженерное получение микроорганизмов-продуцентов.

В середине 70-х годов возникла новая экспериментальная технология - генетическая (или генная) инженерия, которая основана на конструировании рекомбинантной ДНК вне клетки (in vitro) и ее размножении в клетках микроорганизмов. В результате использования этой технологии стало возможным выделять индивидуальные гены, модифицировать, соединять друг с другом, получая “слитые гены”, продуцирующие белки с совершенно новыми свойствами (белковая инженерия).

Типичная схема получения и размножения (амплификации) индивидуального фрагмента ДНК (гена) приведена на рис. 2. В качестве векторов, т. е. молекул-носителей, в которых происходит размножение генов, используют плазмиды, бактериофаги и вирусы, способные размножаться в бактериальных клетках. После соединения (лигирования) вектора с фрагментом ДНК, несущим ген, образуется рекомбинантная ДНК. Затем вектор с геном вводят в клетки микроорганизмов (трансформация), где они амплифицируются. В результате получается множество копий одного гена - клон. Поэтому такой способ получения индивидуального гена называют клонированием.

Если для клонирования использовать ДНК человека, содержащую все его гены, они окажутся в разных клонах будет получена генная библиотека (клонотека) человека. Гены животных, человека и растений, клонируемые таким путем в бактериях (как правило, используют Е. coli), не функционируют в них. Для этого их нужно выделить из бактерии, снабдить регулятором бактериального гена и вновь ввести в бактерию. Получены и используются многие штаммы бактерий, в которых функционируют гены разного происхождения, производящие нужные продукты.

Этот арсенал новых, генно-инженерных, штаммов-продуцентов позволил наряду с продуктами природных штаммов (их называют биопродуктами первого поколения) начать производство на базе генно-инженерных штаммов рекомбинантные белки - биопродукцию второго поколения. Биопродукцией третьего поколения будут искусственно синтезированные соединения, полностью имитирующие биологические функции природных белков, но не являющиеся ими.

Генно-инженерные методы (технология рекомбинантных ДНК) все шире используют в биотехнологическом производстве прежде всего ценных для медицины белков, в том числе таких, которые трудно синтезировать химическими методами пли получить в нужных количествах из биологического материала. Это в первую очередь белки и пептиды (белковые молекулы, состоящие из небольшого числа аминокислот), которые синтезируются в организме человека и используются как медикаменты. Усилия генных инженеров направлены на создание бактерий-продуцентов, которые бы с высокой эффективностью производили такие биологически активные продукты. Основные трудности здесь заключаются не столько в конструировании продуцентов, сколько в том, чтобы синтезирующиеся в них чужеродные белки нормально формировались, модифицировались и не разрушались в клетках микроорганизмов.

Апр
26

Интерфероны.

Это белки-биостимуляторы, активаторы иммунной системы клеток. Кроме того, они обладают антивирусной активностью и препятствуя размножению раковых клеток. Существуют 3 класса интерферонов человека: а, р и у. Уже в конце 70-х гидов были получены первые гибридные ДНК, способные функционировать в бактериальных клетках с образованием р-интерферона человека. Затем аналогичные конструкции были созданы для а- и у интерферонов.

В результате переноса в клетки Е. соi рекомбинантных (гибридных) ДНК с регуляторными элементами бактериального триптофанового или лактозного оперона и интерфероновыми генами получили соответствующие штаммы-продуценты. Для повышения их продуктивности, а также усиления антивирусной активности интерферонов в дальнейшем было проведено несколько дополнительных модификаций рекомбинантной ДНК (в частности, проведена замена некоторых аминокислот), подобраны генотипы клеток-хозяев и условия их культивирования.

Бактериальные штаммы-продуценты всех трех типов интерферонов были получены и в СССР: для а- и у интерферонов - и Институте биоорганической химии АН СССР, а для р-интерферона - во ВНИИГенетики и селекции промышленных микроорганизмов. Кроме Е. coli, для производства интерферонов используют также грамотрицательные бактерии Metfrylomonas, Salmonella, Pseudomonas и др. В частности, на основе штамма Pseudomonas sp. налажено промышленное получение человеческого р-интерферона в СССР. Созданы и дрожжевые продуценты интерферонов, которые имеют некоторые преимущества перед бактериальными: дрожжи используют более дешевые субстраты, не подвержены литическому действию фагов (что постоянно угрожает бактериальным продуцентам) или аутолизису, легко сепарируются, осуществляют правильный процессинг (формирование) преинтерферонов и др.

Апр
26

Начальный этап развития биотехнологии.

На начальном этапе своего развития биотехнология в основном пользовалась живыми системами в том виде, в каком они существовали в природе. Следующий шаг - использование традиционных методов селекции (искусственного отбора) микроорганизмов, растений и животных, получение более продуктивных штаммов, линий. В последние 10 - 15 лет целенаправленнее улучшение свойств живых систем как объектов биотехнологии резко ускорилось и расширилось после того, как с середины 70-х до середины 80-х гг. были разработаны методы генной инженерии. Сначала это были методы рекомбинирования и конструирования очищенных из клеток генов. На следующем этапе были усовершенствованы методы переноса генов в микроорганизмы, а в конце 70-х годов отработаны подходы к переносу генов в культивируемые клетки животных.

В 1980 - 1982 гг. появились методы переноса генов в целые (многоклеточные) животные организмы и почти одновременно - методы переноса генов в растительные клетки и в целые растения. Микроорганизмы, а также клетки, растущие вне организма, после переноса в них новых генов называют генетически трансформированными клетками. Трансформированными можно называть и многоклеточные организмы - животные, растения, но чаще их обозначают как трансгенные животные и растения. Генетический материал переносят в клетки и организмы с помощью разных методов. В микроорганизмы гены вводят в составе кольцевых молекул.

Особые приемы используют для переноса генов в целые животные организмы. Один из них заключается в том, что очищенные гены впрыскивают в только что оплодотворившиеся яйцеклетки (зиготы) с помощью шприца и микропипетки, кончик которой (с внутренним диаметром ~1 мкм) вводят непосредственно в ядро. Ген можно перенести в эмбрион и с помощью вирусов. Существует 2 подхода переноса генов в растения. Первый состоит в том, что гены вводят в изолированные клетки, лишенные полисахаридных стенок (такие клетки называют протопластами). Затем из этих клеток получают целые растения. При другом подходе используют ДНК (Ti-плазмиду) микроорганизма Agrobacterium tumefaciens, способного заражать растительные клетки и переносить в них часть Ti-плазмиды вместе с любой содержащейся в ней чужой ДНК. Переносимый ген предварительно вводят в эту часть Ti-плазмиды. Напомним, что плазмиды - кольцевые молекулы ДНК, присутствующие в клетках вне хромосом.

Естественно, что в небольшой по объему заметке невозможно рассказать в полной мере обо всех аспектах современной биотехнологии. Поэтому наша цель - ознакомить интересующихся лишь с основными, наиболее перспективными направлениями биотехнологических работ.