Апр
26

Управление живыми клетками.

Первоначально во многих случаях ферменты использовали в биотехнологическом производстве только в составе живых клеток, которыми нужно уметь управлять так, чтобы мобилизовать содержащиеся в них ферменты на нужные для производства биопроцессы. Сделать это удается не всегда, поэтому биотехнология, основанная на использовании ферментов в составе клеток (и организмов), имеет пределы на пути повышения эффективности. Идеальной была бы система, в которой можно использовать каталитические свойства очищенных ферментов, создав нужные для каждого производства технологические цепочки. В постепенном вытеснении живых (полуоткрытых) систем, каковыми являются клетки и организмы, биохимическими, т. е. полностью открытыми системами, состоящими из изолированных клеточных структур, и заключается тенденция прогресса в биотехнологии. Однако на каждом этапе развития именно уровень научных и методических достижений определяет возможность отказа от клеток и перехода к открытой системе.

Важнейшее достоинство клеток - это хорошо налаженное автоматическое восполнение изнашивающихся структур и постоянное поддержание их в рабочем состоянии. Этого пока не удалось добиться в открытых системах, они неустойчивы и дороги. Поэтому на данном этапе биотехнология выделения и использования ферментов распространяется пока на те случаи, когда ферменты участвуют в производственных процессах, осуществляются относительно простые химические реакции в производственных масштабах - расщепление (гидролиз), сбраживание, обработка и т. д. Ферментам присущи свойства, которые делают возможным их промышленное применение как катализаторов органических синтезов. Они обладают высокой каталитической активностью и в отличие от неорганических катализаторов высокоспецифичны, работают при умеренных рН и температурах (до 50 - 60°С). Неорганические же катализаторы требуют жестких кислотных и температурных условий, разрушительно действующих как на субстрат, так и на продукт реакции.

Активность ферментов поддается регулированию в широких пределах направленным изменением условий среды, ее кислотности, добавками веществ”, активирующих или подавляющих фермент. Главный недостаток ферментов - “ранимость”, повреждаемость. Правда, достигнуты значительные успехи в изменении свойств ферментов - повышена их устойчивость. Удалось существенно расширить сферу потенциального применения ферментов - они теперь “работают” в ангидридных органических растворителях и суперкритических жидкостях.

Апр
19

Гормон роста.

В организме он продуцируется клетками передней доли гипофиза. Вес этой доли - меньше одной десятой грамма, и лишь небольшая часть ее клеток занята выработкой гормона роста. Его нехватка в организме снижает темп роста, вызывает карликовость (карликовые мыши весят примерно в 2 раза меньше нормальных). Введением гормона можно нормализовать рост.

В медицине при лечении одного пациента требуется 7 мг в неделю очищенного гормона, который ранее получали из гипофиза человека (трупного материала). Наряду с этим уже налажено микробиологическое производство генно-инженерного гормона, позволяющее получать 100 мг препарата из 1 л культуральной среды. В принципе этим способом можно производить килограммы гормона, причем независимо от природы гормона и клеток, где он производится в норме. Генио-инженерное микробиологическое производство выравнивает (унифицирует) условия наработки всех продуктов, т. е. делает биотехнологию индустриальной. Старьте же способы получения в сильной мере зависят от особенностей ткани и концентрации в ней гормона, требуют иногда переработки огромных масс дорогостоящих тканей. К примеру, для получения 25 - 30 мкг гормона секретина необходимо 1 т кишечника коров.

Список производимых гормонов непрерывно пополняется, и их очередность определяется как практической важностью, так и готовностью науки. Создать необходимые продуценты. К гормонам, производство которых начато или начинается, относятся эритропоэтин (регулятор образования эритроцитов и, следовательно, гемоглобина), энкефалины и эндорфины (гормоны нервной системы, которые применяют для снятия болевых ощущений, улучшения памяти, тонуса, настроения).

Микробные клетки пригодны и для производства некоторых стероидных гормонов. Например, Artbrobacter globiformis используют для синтеза преднизолона из гидрокортизона, Микробиологическая трансформация позволяет резко сократить число этапов химического синтеза гормона надпочечников - кортизона.

Фев
28

Интерлейкины.

Это короткие полипептиды, участвующие в организации иммунного ответа. С помощью генной инженерии в настоящее время созданы штаммы-продуценты Е. coli, производящие различные типы интерлейкинов человека. В СССР получен штамм-продуцент интерлейкина-2 (Институт органического синтеза АН Латвийской ССР), который используют для лечения рака почек. Получен рекомбинантный интерлейким-1, продуцируемый клетками Е. coli. Этот белок рекомендуют для лечения не только иммунных расстройств, но и некоторых опухолевых заболеваний.

Для создания высокоэффективных лекарственных средств в последнее время с помощью генно-инженерных методов конструируют бифункциональные белки, например, противоопухолевый препарат, представляющий собой белок, содержащий последовательности интерлейкина-2 и колоний-стимулирующего фактора гранулоцитов и макрофагов.

Производство белково-пептидных препаратов для медицинских целей - одно из наиболее бурно развиваемых направлений биотехнологии, в которое вкладывают огромные средства. В 1987 г. в США терапевтических полипептидов было произведено на общую сумму 568 млн. долл. Эта сумма, как предполагают специалисты, к 1995 г. возрастет до 1117 млн. долл. Ожидается, что к 2000 г. общая стоимость фармакологических препаратов и диагностикумов достигнет 100 млрд. долл.