Май
08

Генно-инженерное получение микроорганизмов-продуцентов.

В середине 70-х годов возникла новая экспериментальная технология - генетическая (или генная) инженерия, которая основана на конструировании рекомбинантной ДНК вне клетки (in vitro) и ее размножении в клетках микроорганизмов. В результате использования этой технологии стало возможным выделять индивидуальные гены, модифицировать, соединять друг с другом, получая “слитые гены”, продуцирующие белки с совершенно новыми свойствами (белковая инженерия).

Типичная схема получения и размножения (амплификации) индивидуального фрагмента ДНК (гена) приведена на рис. 2. В качестве векторов, т. е. молекул-носителей, в которых происходит размножение генов, используют плазмиды, бактериофаги и вирусы, способные размножаться в бактериальных клетках. После соединения (лигирования) вектора с фрагментом ДНК, несущим ген, образуется рекомбинантная ДНК. Затем вектор с геном вводят в клетки микроорганизмов (трансформация), где они амплифицируются. В результате получается множество копий одного гена - клон. Поэтому такой способ получения индивидуального гена называют клонированием.

Если для клонирования использовать ДНК человека, содержащую все его гены, они окажутся в разных клонах будет получена генная библиотека (клонотека) человека. Гены животных, человека и растений, клонируемые таким путем в бактериях (как правило, используют Е. coli), не функционируют в них. Для этого их нужно выделить из бактерии, снабдить регулятором бактериального гена и вновь ввести в бактерию. Получены и используются многие штаммы бактерий, в которых функционируют гены разного происхождения, производящие нужные продукты.

Этот арсенал новых, генно-инженерных, штаммов-продуцентов позволил наряду с продуктами природных штаммов (их называют биопродуктами первого поколения) начать производство на базе генно-инженерных штаммов рекомбинантные белки - биопродукцию второго поколения. Биопродукцией третьего поколения будут искусственно синтезированные соединения, полностью имитирующие биологические функции природных белков, но не являющиеся ими.

Генно-инженерные методы (технология рекомбинантных ДНК) все шире используют в биотехнологическом производстве прежде всего ценных для медицины белков, в том числе таких, которые трудно синтезировать химическими методами пли получить в нужных количествах из биологического материала. Это в первую очередь белки и пептиды (белковые молекулы, состоящие из небольшого числа аминокислот), которые синтезируются в организме человека и используются как медикаменты. Усилия генных инженеров направлены на создание бактерий-продуцентов, которые бы с высокой эффективностью производили такие биологически активные продукты. Основные трудности здесь заключаются не столько в конструировании продуцентов, сколько в том, чтобы синтезирующиеся в них чужеродные белки нормально формировались, модифицировались и не разрушались в клетках микроорганизмов.

Май
01

Новые сорта.

В результате этой сложной, но успешно проведенной работы был получен новый сорт помидоров с улучшенными свойствами, а именно - способностью более продолжительное время не размягчаться при хранении. Заметим, что на получение нового сорта традиционными методами требуется 10 и более лет, в этом случае сорт был получен всего за один сезон. Понятно, почему зарубежные фирмы (например, “Монсанта”) финансируют многомиллиардные научные исследования в области генной инженерии. В этой фирме разрабатывают методы переноса из бактерий в растения генов, кодирующих токсины, убивающие насекомых.

Токсический белок, продуцируемый микробом Bacillus Ihmingiensis, убивает личинок насекомых питающихся листьями. Этот токсин выделен в кристаллическом виде. Один из способов его использования - распыление на поверхность растения. Однако более экономичен и удобен перенос гена токсина в растения. В 1987 г. ген токсина, изолированный из бактерий успешно перенесли в геном табака. Его экспрессия привела к тому, что личинки насекомого Manduca secta погибал при скармливании листьев трансгенного растения

Аналогичные работы проводят с хлопчатником для придания ему устойчивости к гусеницам. Получены растения, содержащие тот же ген токсина. Кроме того, создан инсектицидоустойчивый трансгенный хлопчатник. В геном обычного хлопчатника введен ген ингибитора трипсина коровьего гороха, продукт которого подавляет активность протеаз в пищеварительной системе насекомых. Известны многие токсины, продуцируемые микроорганизмами и эффективно убивающие разные виды насекомых. Сейчас исследуют гены этих токсинов с целью создания, например, трансгенного картофеля, устойчивого к колорадскому жуку.

Апр
26

Управление живыми клетками.

Первоначально во многих случаях ферменты использовали в биотехнологическом производстве только в составе живых клеток, которыми нужно уметь управлять так, чтобы мобилизовать содержащиеся в них ферменты на нужные для производства биопроцессы. Сделать это удается не всегда, поэтому биотехнология, основанная на использовании ферментов в составе клеток (и организмов), имеет пределы на пути повышения эффективности. Идеальной была бы система, в которой можно использовать каталитические свойства очищенных ферментов, создав нужные для каждого производства технологические цепочки. В постепенном вытеснении живых (полуоткрытых) систем, каковыми являются клетки и организмы, биохимическими, т. е. полностью открытыми системами, состоящими из изолированных клеточных структур, и заключается тенденция прогресса в биотехнологии. Однако на каждом этапе развития именно уровень научных и методических достижений определяет возможность отказа от клеток и перехода к открытой системе.

Важнейшее достоинство клеток - это хорошо налаженное автоматическое восполнение изнашивающихся структур и постоянное поддержание их в рабочем состоянии. Этого пока не удалось добиться в открытых системах, они неустойчивы и дороги. Поэтому на данном этапе биотехнология выделения и использования ферментов распространяется пока на те случаи, когда ферменты участвуют в производственных процессах, осуществляются относительно простые химические реакции в производственных масштабах - расщепление (гидролиз), сбраживание, обработка и т. д. Ферментам присущи свойства, которые делают возможным их промышленное применение как катализаторов органических синтезов. Они обладают высокой каталитической активностью и в отличие от неорганических катализаторов высокоспецифичны, работают при умеренных рН и температурах (до 50 - 60°С). Неорганические же катализаторы требуют жестких кислотных и температурных условий, разрушительно действующих как на субстрат, так и на продукт реакции.

Активность ферментов поддается регулированию в широких пределах направленным изменением условий среды, ее кислотности, добавками веществ”, активирующих или подавляющих фермент. Главный недостаток ферментов - “ранимость”, повреждаемость. Правда, достигнуты значительные успехи в изменении свойств ферментов - повышена их устойчивость. Удалось существенно расширить сферу потенциального применения ферментов - они теперь “работают” в ангидридных органических растворителях и суперкритических жидкостях.

Апр
25

Создание новых форм.

Перенос генов в растения может быть с успехом использован и для создания новых интересных форм в цветоводстве. С помощью генно-инженерных подходов получена, например, трансгенная петуния с белыми цветами. Достигнуто это путем переноса гена хальконсинтетазы в антисмысловой ориентации. В результате синтеза анти-мРНК нарушалось образование флавиноидов, ключевую роль в котором играет фермент хальконсинтетаза.

Большое внимание в биотехнологических работах уделяют сое, плоды которой содержат много белка (40%) и масла (20%). Некоторым исследовательским группам удалось регенерировать из трансформированных отдельными генами клеток сои, растущих в культуре, целые растения с измененными генетическими свойствами. Они устойчивее к гербицидам, вирусам и насекомым, содержат больше богатых метионином запасных белков. Работы с соей продолжаются с целью получения новых сортов, устойчивых к вирусам и с измененным составом масла. Желание исследователей улучшить свойства такого ценного продукта, как масло, вполне понятно. Ведь мировая продукция растительного масла в настоящее время достигает 60 млн. т, а общая стоимость производимого масла составляет 20 млрд. долл.

Мы уже говорили об ассоциациях растений с микробами. Генная инженерия стремится изменить генетические свойства не только растений, но и ассоциированных с ними микроорганизмов. Известно, что растения получают из почвы лишь незначительную часть содержащегося в ней азота. Некоторых из них снабжают азотом симбиотические бактерии, которые живут в анаэробных условиях в клубеньках, образуемых на корневых волосках. За связывание атмосферного азота у азотфиксирующих клубеньковых бактерий Rhizobium ответственны гены nif. Перенос nif-генов в генетический аппарат растений решил бы важнейшую агробиотехнологическую задачу. Однако сейчас пока удалось реализовать несколько иной подход, который позволяет усилить азотфиксирующие свойства симбионта донника (Rhizobium meliloti) путем увеличения в нем числа nil-генов.

Разработаны подходы для получения морозоустойчивых растений, основанные на генно-инженерных манипуляциях с Pseudomonas syringae, сосуществующей с некоторыми растениями и содержащей белок, который ускоряет кристаллизацию льда. Когда из бактерии удаляют ген для этого белка, полученный штамм называют “лед-минус”. Штамм “лед-минус”, распыленным над клубнями картофеля, конкурирует с обычными бактериями, что в конечном счете приводит к повышению морозоустойчивости растений.