Апр
25

Создание новых форм.

Перенос генов в растения может быть с успехом использован и для создания новых интересных форм в цветоводстве. С помощью генно-инженерных подходов получена, например, трансгенная петуния с белыми цветами. Достигнуто это путем переноса гена хальконсинтетазы в антисмысловой ориентации. В результате синтеза анти-мРНК нарушалось образование флавиноидов, ключевую роль в котором играет фермент хальконсинтетаза.

Большое внимание в биотехнологических работах уделяют сое, плоды которой содержат много белка (40%) и масла (20%). Некоторым исследовательским группам удалось регенерировать из трансформированных отдельными генами клеток сои, растущих в культуре, целые растения с измененными генетическими свойствами. Они устойчивее к гербицидам, вирусам и насекомым, содержат больше богатых метионином запасных белков. Работы с соей продолжаются с целью получения новых сортов, устойчивых к вирусам и с измененным составом масла. Желание исследователей улучшить свойства такого ценного продукта, как масло, вполне понятно. Ведь мировая продукция растительного масла в настоящее время достигает 60 млн. т, а общая стоимость производимого масла составляет 20 млрд. долл.

Мы уже говорили об ассоциациях растений с микробами. Генная инженерия стремится изменить генетические свойства не только растений, но и ассоциированных с ними микроорганизмов. Известно, что растения получают из почвы лишь незначительную часть содержащегося в ней азота. Некоторых из них снабжают азотом симбиотические бактерии, которые живут в анаэробных условиях в клубеньках, образуемых на корневых волосках. За связывание атмосферного азота у азотфиксирующих клубеньковых бактерий Rhizobium ответственны гены nif. Перенос nif-генов в генетический аппарат растений решил бы важнейшую агробиотехнологическую задачу. Однако сейчас пока удалось реализовать несколько иной подход, который позволяет усилить азотфиксирующие свойства симбионта донника (Rhizobium meliloti) путем увеличения в нем числа nil-генов.

Разработаны подходы для получения морозоустойчивых растений, основанные на генно-инженерных манипуляциях с Pseudomonas syringae, сосуществующей с некоторыми растениями и содержащей белок, который ускоряет кристаллизацию льда. Когда из бактерии удаляют ген для этого белка, полученный штамм называют “лед-минус”. Штамм “лед-минус”, распыленным над клубнями картофеля, конкурирует с обычными бактериями, что в конечном счете приводит к повышению морозоустойчивости растений.

Апр
22

Биотехнологическое получение антибиотиков.

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей (например, полиоксин, баридакицин, косгалицин), другие - в медицинских целях (пенициллины, тетрациклины, цефалоспорин С и др.).

Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие.

До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.

Разработан также метод так называемого мутасинтеза, позволяющий получать модифицированные антибиотики. В этом случае используют мутантные штаммы-продуценты, в которых нарушен синтез определенных участков молекулы антибиотика. Для биосинтеза функционально-активного антибиотика в среду культивирования продуцента вносят аналоги этих участков. В связи с постепенным приобретением патогенными бактериями устойчивости к антибиотикам созданы методы внесения специальных модификаций в структуры антибиотиков, сохраняющие их антибактернальные эффекты. В настоящее время широко распространены полусинтетические антибиотики, например ампициллин, цефалексин, метициллин и др.

Апр
09

Получение гибридных клеток.

Поскольку растительные клетки окружены жесткими целлюлозными оболочками, для их слияния нужно предварительно растворить эту оболочку, сохранив находящуюся под ней нежную белково-липидную плазматическую мембрану. Клетки, лишенные целлюлозной оболочки, называют протопластами. Получают протопласты обработкой клеток смесью ферментов. Затем протопласты с обнажившейся плазматической мембраной сливают, получая гибридные клетки, несущие свойства обеих клеток-партнеров. Этим путем созданы межвидовые гибриды табака, картофеля, капусты с турнепсом. Протопласты используют та we для переноса в них органоидов других клеток - митохондрий, хлоропластов, цитоплазмы.

Приведем наиболее интересные гибриды, полученные в результате слияния клеток. Широкое распространение в США и Англии получил гибридный сорт помидоров, устойчивый к двум вирусам (PLRV и PVY), которые наносят наибольший вред этим растениям. Гибридный сорт создали в результате слияния протопластов дикого вида помидора S. brevidens, устойчивого к PLRV и PVY, и коммерческого помидора S. tuberosum. В Японии создан таким образом сорт помидора, устойчивого к высоким температурам.

Значительный прогресс в этой области произошел и благодаря искусственным ассоциациям растительных клеток с микроорганизмами, особенно с азотфиксирующими бактериями. Проблема придания растениям свойства азотфиксации имеет огромное народнохозяйственное значение, поскольку производство азотных удобрений требует больших затрат, а их использование загрязняет среду. Уже получены положительные результаты благодаря искусственным ассоциациям азотфиксирующей бактерии Anaboena variabilis и табака. Несколько подробнее о проблеме азотфиксации будет сказано ниже.

Несмотря на очевидные успехи клеточной инженерии, наибольший интерес в последнее время вызывают работы по целенаправленному изменению свойств сельскохозяйственных растений с помощью методов генной инженерии - конструирования и переноса генов в растительные клетки и в целые растения, В последние годы с появлением генно-инженерных методов клонирования генов и их переноса в растительные клетки, а затем и в регенерируемые из них растения стало возможным заметно быстрее создавать новые сорта. Это направление, зародившееся лишь в середине 80-х годов, быстро набирает темп. Изолировано множество генов растений и микроорганизмов, кодирующих признаки продуктивности, устойчивости к неблагоприятным факторам. Получено немало растений, содержащих такие гены. Растения, несущие в геноме чужеродные гены, т. с. трансгенные растения, постепенно внедряются в сельскохозяйственную практику, их вклад в производстве сельскохозяйственной продукции быстро растет. Прогнозируется, что рынок биотехнологически улучшенных растений и семян в США составит в 1992 г. 24 млн., долл., а в 1997 г. может достичь 122,5 млн. долл.

Март
26

Производство пищевых белков и аминокислот.

Уже давно микроорганизмы используют как источник белка для питания человека и животных. Еще в годы первой мировой войны один из основоположников молекулярной биологии Макс Дельбрюк с коллегами в Германии (в 1937 г. переехал в США) разработали первый технологический процесс промышленного культивирования пивных дрожжей для их добавления в супы и колбасы. Белки, продуцируемые бактериями или дрожжами и используемые в пищевых целях, получили название белки одноклеточных организмов (БОО).

На первом этапе в качестве сырья для микроорганизмов использовали в основном углеводороды нефти. Затем интерес был проявлен к другим субстратам, прежде всего к природным газам (метан). Как субстраты для получения БОО из дрожжей используют некоторые промышленные отходы (например, отработанный сульфитный щелок с бумажных комбинатов, молочную сыворотку - побочный продукт сыроварения, мелассу (патока), отходы спиртоводочных заводов). Промышленный продукт получают в виде суммарной биомассы. Разработаны промышленные линии для производства и переработки микроводорослей с целью получения БОО. Объем дрожжевой биомассы, полученной в мире в 1985 г., превысил 1 млн. т. Ожидается, что в 1990 г. этот объем возрастет более чем в 2 раза.

Производство БОО имеет многие преимущества перед производством белка в животноводстве и растениеводстве: 500 кг дрожжей дают за сутки 80 кг белков, а у быка того же веса суточный привес составляет в лучшем случае 500 г белка. Однако БОО используют в основном как корм для скота, и лишь в будущем можно ожидать создания технологий получения БОО, пригодных для питания человека. Перспективно в этом отношении культивирование некоторых грибов (Fusarium), зеленых водорослей (Chlorella), цианобактерий (Spirulina), имеющих адекватные для человека органолептические свойства. В настоящее время уже налажено производство на базе крахмала волокнистой массы Fusarium как источника пищи для человека.

Изменения в генах, осуществленные с помощью генной инженерии, могут модифицировать структуру и улучшать свойства пищевых белков. Наибольший интерес в плане таких манипуляций привлекают к себе 3 белка животных и растений: овальбумин курицы, составляющий большую часть (54%) белка яйца, казеины (главная фракция в молоке) и белки сои (42% в бобах). Например, манипуляции с кодирующей частью гена k-казеина, в результате которых из белка элиминировался фрагмент, расположенный между 9-й и 17-й аминокислотами, а также” цистеин, участвующий в образовании дисульфидной связи, привели к тому, что новый белок как пищевой продукт стал более качественным.