Март
15

Трансгенные мыши.

Всего за 10 лет (первые трансгенные мыши были получены в 1980 г.) создана уникальная область генно-инженерных животных. Трансгенные мыши всего за одно поколение претерпевают такие целенаправленные изменения, для достижения которых ранее требовалось проводить селекцию на 40 - 50 поколениях. Они способны продуцировать совершенно новые виды белковых продуктов, которые иногда оказывают эффективные воздействия на рост и развитие самих мышей. В результате, переноса дополнительного гена гормона роста (неважно, из какого источника - из другого животного, человека) образуется избыточное количество гормона роста, стимулирующего рост: размеры мыши удваиваются (таких трансгенных мышек называют гигантскими).

Трансгенные мыши стали обычными объектами лабораторных исследований и уже вносят неоценимый вклад в фундаментальные научные исследования. Однако они совершенно не пригодны для целен биотехнологического производства. Начиная с 1985 г. во многих лабораториях пытаются получить трансгенных сельскохозяйственных животных - овец, свиней. За это время удалось преодолеть методические трудности проведения таких работ на сельскохозяйственных животных. Уже получено большое число овец и свиней, содержащих чужеродные гены. Планируется получение ряда важных медицинских препаратов - фактора свертываемости крови, интерферонов и т. д.

Очень хотелось бы воспроизвести на сельскохозяйственных животных продемонстрированный на мышах аффект ускоренного роста. Специалисты считают, что трансгенные сельскохозяйственные животные - это живые биотехнологические фабрики XXI в., которые экологически будут наиболее чистыми производителями ценных белковых препаратов. Сегодня уже создана фундаментальная и методическая база, но требуется еще приспособить эти научно-технические достижения к условиям работы с сельскохозяйственными животными.

Фев
27

Трансгенные животные.

Разработано несколько методов введения генов в яйцеклетки или в ранние эмбрионы где они включаются в хромосомы и передаются вместе с дочерними хромосомами во все клетки развивающегося организма. В зависимости от того, какой регулятор содержит чужеродный ген, он функционирует в разных тканях. Например, если к перенесенному гену независимо от того, откуда он выделен (из бактерий, растений чело века, животного), подсоединен регулятор гена мыши который в норме функционирует в печени, то перенесенный ген будет функционировать в печени трансгенного животного. Следовательно, подбирая регуляторный элемент к любому гену, можно заранее “запланировать” его работу в том органе, в котором желательно.

Получено множество трансгенных мышей, в которых согласно плану (т. е. в соответствующих тканях и органах) функционируют гены вирусов и бактерий, растений, разных видов животных и человека. В результате функционирования перенесенных генов в клетках гипофиза трансгенных мышей синтезируется гормон роста человека, крысы, крупного рогатого скота, в поджелудочной железе синтезируется совершенно нормальный инсулин человека, в клетках крови - гемоглобин кролика и т. д.
Шотландским генетикам (Джону Кларку и др.) из Исследовательского центра разведения животных в совместной работе с французским молекулярным биологом Ричардом Лате удалось получить трансгенных мышей, в молочных железах которых синтезировался белок молока овцы (р-лактоглобулин), т. е. им удалось изменить качество молока. В США известный специалист в области биотехнологии животных Катерина Гордон получила мышей, молочные железы которых продуцируют человеческий активатор плазминогена - ценный медицинский препарат. Сотни разнообразных генов разного происхождения перенесено в мышей, и как правило, эти чужие гены нормально функционировали там, где предусмотрел экспериментатор.

Фев
23

Будущее биотехнологии.

По имеющимся в литературе оценкам, к 2000 г. белки с измененными свойствами, полученные целенаправленной модификацией структуры кодирующих их генов, будут составлять примерно 4% всех потребляемых белков на общую сумму 15 млрд. долл. Общее же количество пищевых продуктов, получаемых с помощью биотехнологии, к концу XX п. увеличится, по расчетам специалистов, по крайней мере, в 10 раз.

На использовании микроорганизмов основано производство ими аминокислот, в первую очередь так называемых незаменимых, которые могут быть полезными добавками в пищу животных и человека. Среди незаменимых аминокислот, промышленное производство которых уже давно налажено, первое место занимает лизин, затем треонин и глутаминовая кислота. Получены штаммы Brevibacterium flavum, которые превращают в лизин более одной трети сахаров, содержащихся в питательной среде.

В СССР во ВНИИ генетики и селекции промышленных микроорганизмов с помощью генно-инженерных методов сконструированы высокопродуктивные штаммы Е. coli продуценты L-треонина, L-лизина и L-триптофана, которые используются и промышленности.

Интерес к микробиологическим способам промышленного производства аминокислот вызван также и тем, что они позволяют получать L-аминокислоты в чистом виде, тогда как при химическом синтезе получают рацемические смеси, содержащие L- и D-аминокислоты. Последние не входят в состав природных белков (они содержатся в незначительных количествах лишь в некоторых пептидах микроорганизмов, в частности пептидах, являющихся антибиотиками).

Производство витаминов. Напомним, что витамины - это низкомолекулярные органические соединения, роль которых для нормальной жизнедеятельности организма хорошо известна. Поскольку в пищевых продуктах витаминов содержится немного (10 - 100 мг на 100 г съедобной части продукта) и они быстро разрушаются, требуется витаминизация готовой пищи и продуктов. Поэтому уже давно витамины производят в больших количествах. Традиционные способы получения витаминов основаны либо на переработке больших количеств ценного сырья, либо (в редких случаях) на химическом синтезе. Поэтому витаминная промышленность нуждается в более эффективных технологиях. Такие технологии успешно создаются.

С помощью лишь генетических манипуляций (воздействием на регуляцию метаболизма) были получены штаммы микроорганизмов, которые производят в десятки тысяч раз больше витаминов, чем необходимо для их роста. Это - штамм Ashbya gossypii - продуцент рибофлавина, штаммы Pseuclomonas dеnitrificans и Propioribacterium freudenrcechii, производящие витамин В2 и др. В СССР на базе Bacillus subtilis сконструирован эффективный продуцент витамина B2.

Микробиологические технологии позволили решить и задачу производства аскорбиновой кислоты (витамин С). В Японии разработан эффективный ферментативный способ получения стабильного производного витамина С - аскорбил-2-фосфата, который используют в качестве антиоксиданта.

Помимо широкого применения в медицине в качест-пе профилактических и лечебных средств, получаемые микробиологическим путем витамины В2 и В2 добавляют в пищу животным для сбалансирования кормов.