Март
15

Трансгенные мыши.

Всего за 10 лет (первые трансгенные мыши были получены в 1980 г.) создана уникальная область генно-инженерных животных. Трансгенные мыши всего за одно поколение претерпевают такие целенаправленные изменения, для достижения которых ранее требовалось проводить селекцию на 40 - 50 поколениях. Они способны продуцировать совершенно новые виды белковых продуктов, которые иногда оказывают эффективные воздействия на рост и развитие самих мышей. В результате, переноса дополнительного гена гормона роста (неважно, из какого источника - из другого животного, человека) образуется избыточное количество гормона роста, стимулирующего рост: размеры мыши удваиваются (таких трансгенных мышек называют гигантскими).

Трансгенные мыши стали обычными объектами лабораторных исследований и уже вносят неоценимый вклад в фундаментальные научные исследования. Однако они совершенно не пригодны для целен биотехнологического производства. Начиная с 1985 г. во многих лабораториях пытаются получить трансгенных сельскохозяйственных животных - овец, свиней. За это время удалось преодолеть методические трудности проведения таких работ на сельскохозяйственных животных. Уже получено большое число овец и свиней, содержащих чужеродные гены. Планируется получение ряда важных медицинских препаратов - фактора свертываемости крови, интерферонов и т. д.

Очень хотелось бы воспроизвести на сельскохозяйственных животных продемонстрированный на мышах аффект ускоренного роста. Специалисты считают, что трансгенные сельскохозяйственные животные - это живые биотехнологические фабрики XXI в., которые экологически будут наиболее чистыми производителями ценных белковых препаратов. Сегодня уже создана фундаментальная и методическая база, но требуется еще приспособить эти научно-технические достижения к условиям работы с сельскохозяйственными животными.

Март
08

Перспективы лечения СПИДа.

Перспективным представляется использование, например, видоизмененных регуляторных белков ВИЧ и которые из них полностью подавляют функционирование нормальных белков и предотвращают этим размножение вируса. Теоретически гены, кодирующие такие мутантные белки, можно вводить в стволовые клетки костного мозга в культуре, а затем трансформированные клетки переносить в костный мозг человека.

Для профилактики СПИДа создают диагностикумы для быстрого и однозначного обнаружения ВИЧ. Эта задача сейчас решена - есть хорошие диагностиками, налажено их массовое производство. Большинство таких диагностикумов основано па выявлении в крови вирусных белков с помощью антител. Но и здесь интенсивно ищут новые подходы. Перспективным считают обнаружение следовых количеств ВИЧ с помощью цепной полимеразной реакции. В результате 20 последовательно проведенных циклов “денатурация - синтез” в течение короткого времени количество анализируемой ДНК в пробе возрастает в миллионы раз, и она легко определяется с помощью реагентов.

Общественное движение за решение проблемы СПИДа только набирает силу (в нашей стране этот процесс идет с большом задержкой). Должно быть полностью осознано что наряду с ядерной опасностью и экологией СПИД стал общемировой проблемой. Необходимость в срочной мобилизации международных ученых привела к созданию глобальной программы по СПИДу, координируемой Всемирной Организацией здравоохранения (ВОЗ). Над созданием вакцин работают лаборатории многих стран, объединенных в специальную программу IIIVAC (от англ. HIV-vaccine) и возглавляемой первооткрывателем ретровирусов человека - Робертом Галло.

Пока же кривая числа зарегистрированных больных и вирусоносителей поднимается все выше: только в США за прошедшие годы больных было в 1987 г 50 тыс. в 1988 г. - 66464 человек, в 1989 г. - 113211. По данным ВОЗ, в 159 странах мира в феврале 1990 г. было зарегистрировано 215 тыс. больных (по неофициальным данным, их в 2 - 2,5 раза больше). Прогнозируется, что их число только в США составит в 1991 г 270 тыс. в 1992 г. - 365 тыс., в 1993 г. - 450 тыс. человек. Число вирусоносителей во всем мире оценивается сейчас от 5 до 10 млн. Ожидается резкий подъем вирусоносительства в ближайшие годы в СССР. Возможно ли, чтобы СПИД устоял против современного мира? Ученые уверены, что он будет побежден, хотя и неясно, когда и какой ценой. Такая оценка сегодняшних возможностей медицины в лечении СПИДа может показаться несправедливой, учитывая, что в популярной печати часто появляются сообщения, которые позволяют предполагать либо о решении проблемы лечения СПИДа, либо о близости такого решения. К сожалению, это заблуждение характерно и для других острых медицинских проблем (например, онкологической) Так недавно в газетах сообщалось об успехе в лечении больных СПИДом, достигнутом благодаря прогреву крови выкаченной из тела больного и затем влитой обратно. Однако в научной медицинской литературе пока нет достоверного описания и обоснования такого метода лечения.

Фев
17

Выращивание кристаллов.

В условиях пониженного гравитационного поля резко улучшается также процесс создания белковых кристаллов больших размеров, представляющих ценность в частности, для рентгеноструктурных исследований и получения высокочистых препаратов. Кристаллизация белков происходит в условиях стабилизации молекул благоприятствующих проявлению сил слабого взаимодействия, которые в земных условиях подавляются более превалирующими действующими на больших расстояниях силами гравитации и конвекции. Это увеличивает число точек кристаллизации в растворе и способствует образованию большого числа маленьких кристаллов. В условиях невесомости удается получать существенно более крупные кристаллы.

Из нескольких разработанных для этого методов наиболее привлекает метод “висячей капли”. Каплю жидкости, содержащей белок, буфер и соли (иногда вместо солей - полиэтиленгликоль), подвешивают на нижней поверхности какой-либо опоры и дают уравновеситься. В результате испарения воды белок концентрируется и выпадает в осадок, образуя кристаллы. Этот процесс “выращивания” кристаллов растягивается часто на многие недели. В условиях невесомости (ракеты программы TEXUS) были получены кристаллы нескольких ферментов: лизоцима, р-галактозидазы.

Оказалось, что кристаллизация идет в этих условиях быстрее, а сами кристаллы крупнее в 27 (р-галактозидаза) и в 1000 (лизоцим) раз, чем в земных условиях. Как сообщила Гарвардская школа бизнеса, фармацевтические фирмы готовы платить 100 - 200 тыс. долл. за белки, закристаллизованные в условиях невесомости. Ведутся также работы для проведения в условиях невесомости кристаллизации белков в неприкрепленной, а в свободно плавающей в пространстве капле, что может улучшить качество образуемых кристаллов.

Условия невесомости более благоприятны также для такого процесса, как инкапсулирование клеток в полупроницаемые мембраны. Инкапсулированные клетки, например клетки поджелудочной железы животных, можно имплантировать (вживлять) в тело больных сахарным диабетом, где они могут продуцировать инсулин. Поскольку инсулин - низкомолекулярный белок, он будет проходить через мембрану в кровоток, а антитела не смогут проникать через мембрану, т. е. имплантированные таким способом клетки не будут отторгаться. Инкапсулированные клетки печени, например, можно использовать также для создания искусственных органов с целью очищения крови.

Фев
08

Микробиологическое производство биологически активных белков и гормонов.

В каких случаях чаще всего назначают гормоны?

1. Для восполнения их нехватки у людей с наследственными дефектами (сахарный диабет, карликовость, импотенция и т. д.) или заболеваниями, возникшими при жизни.

2. Для суперактивации регулируемого гормоном процесса (стимулирование многоплодия и т. д.).

Тормозит практическое применение гормонов, главным образом в медицине, их дефицит. До начала 80 х. годов источником гормонов служили органы и ткани человека и животных, главным образом донорская кровь. Однако в последние годы создание любых препаратов из органов и крови человека резко ограничилось из-за опасения распространения таким путем вирусов, и в первую очередь ВИЧ, вызывающего СПИД.

Белково-пептидные препараты животного происхождения иммунологически отличаются от белков человека, поэтому могут вызывать (и нередко вызывают) аллергические реакции, сила которых зависит от индивидуальных особенностей белкового препарата и пациента. Тем не менее, до сих пор люди вынуждены широко применять гормоны животных. Биотехнология, вступившая в эру генной инженерии, впервые открыла реальные возможности промышленного производства гормонов и иных препаратов человека в масштабах, достаточных для удовлетворения потребностей медицины.

Рассмотрим наиболее ценные для медицины и животноводства продукты, биотехнологическое производство которых налажено или налаживается в промышленных масштабах.